Distant Clusters of Galaxies in a Deep XMM-Newton Observation Targeting LBQS 2215-1759 in CFHT-LS D4

Arjen de Hoon

Axel Schwope (AIP) Georg Lamer (AIP) Hans Böhringer (MPE) Rene Fassbender (MPE) Alessandro Nastasi

(MPE) Robert Suhada (USM) Martin Mühlegger (MPE) Daniele Pierini (MPE) Miguel Verdugo (MPE)

Joana Santos (ESAC Madrid) Piero Rosati (ESO) Gabriel Pratt (Saclay) Joe Mohr (USM Munich) Hernan

Quintana (U Catolica) Nelson Padilla (U Catolica) Alessio Romeo (U Andres Bello)

Leibniz-Institute for Astrophysics Potsdam (AIP), Germany

May 23, 2012

Distant Clusters of Galaxies

- CDM
- Cluster as giant laboratories
- Observation strategies

Introduction Cluster content Conclusions References

XMM-Newton Distant Cluster Project

Current status

Published sample of 22 X-ray clusters 0.9 < z < 1.6.

- 17 clusters *z* > 1.0
- 7 clusters z > 1.3

Fassbender et al. (2011)

Introduction

Cluster content Cosmological implications Conclusions References

LBQS field

ObsID	good exposure time [ks]		
	MOS1	MOS2	PN
0106660101	57	57	55
0106660201	52	52	38
0106660401	33	34	-
0106660501	8	8	6
0106660601	100	101	84
total	252	252	183

Catalog

Full catalog available on-line. 255 point + 9 extended sources.

AIP

Optical follow-up Completeness

Follow-up strategy

Redshift (estimate) from:

- Photometric colour
- X-ray spectrum
- Spectroscopic confirmation

Arjen de Hoon

Optical follow-up Completeness

Follow-up strategy

Redshift (estimate) from:

- Photometric colour
- X-ray spectrum
- Spectroscopic confirmation

Arjen de Hoon

Optical follow-up Completeness

Follow-up strategy

Redshift (estimate) from:

- Photometric colour
- X-ray spectrum
- Spectroscopic confirmation

Optical follow-up Completeness

Cluster confirmation

Confirmation of 6 clusters

3 clusters $z \ge 1.0$ (incl. Stanford et al. (2006))

3 clusters 0.3 < z < 0.4

3 rejections

Arjen de Hoon

Optical follow-up Completeness

Overdensities of Galaxies

Search for *projected* galaxy overdensities in photometric *redshift slices*.

CFHT-LS D4

Data reduction and photo-z determination by Lerchster et al. (2011) for WL analysis.

u*g'r'i'z'JHKs

8-band photometry

Optical follow-up Completeness

Arjen de Hoon Galax

Optical follow-up Completeness

Cluster simulation

Simulation (Mühlegger 2010)

10 β-models
25 core radii
25 flux bins
amounts to 31 250 simulated clusters

Arjen de Hoon Galaxy Clusters as Giant Cosmic Laboratories / ESAC Spain

P

Optical follow-up Completeness

X-ray selection function

Small cosmological survey

- 50% complete $S > 2.5 \cdot 10^{-15} \ erg \ s^{-1} \ cm^{-2}$
- $\sim 0.2 \, deg^2$

Arjen de Hoon Galaxy Clusters as Giant Cosmic Laboratories / ESAC Spain

Small cosmological survey

- 50% complete $S > 2.5 \cdot 10^{-15} \ erg \ s^{-1} \ cm^{-2}$
- $\sim 0.2 \, deg^2$

Arjen de Hoon Galaxy Clusters as Giant Cosmic Laboratories / ESAC Spain

Conclusions

X-rays

Robust X-ray selected clusters sample 2 new $z \ge 1.0$ clusters

Completeness

Well-defined selection function Photo-z maps

Flux-limited survey

50% complete at 2.5 \cdot 10^{-15} erg s^{-1} cm^{-2}

XDCP $\sim 80 \, deg^2$

Paper soon

de Hoon et al. (2012)

X-ray properties

T	$r_{\rm spec}$	R_{500}	L_{500}	M ₅₀₀
keV	arcsec	Mpc	$10^{42} {\rm ergs^{-1}}$	$10^{14}M_{\odot}$
2.14 ± 0.07	48	0.56	14.5 ± 0.3	0.79
4.40 ± 0.48	23	0.39	70.7 ± 5.3	1.07
1.42 ± 0.18	29	0.40	1.69 ± 0.09	0.17
2.06 ± 0.20	23	0.41	21.6 ± 4.0	0.57
2.00 ± 0.21	26	0.39	33.5 ± 7.9	0.71
1.84 ± 0.86^{a}	30	0.34	0.92 ± 0.2	0.12

Photometry

Field	Telescope	Instrument	Filter	<i>m_{lim}</i> [AB mag]
D4	CFHT	MegaPrime	u*	27.14
	CFHT	MegaPrime	g'	27.61
	CFHT	MegaPrime	r'	27.44
	CFHT	MegaPrime	i'	27.16
	CFHT	MegaPrime	z'	25.99
	CFHT	WirCam	J	25.10
	CFHT	WirCam	Н	24.62
	CFHT	WirCam	Ks	24.62

Arjen de Hoon

Quasars

AIP

Flux determination

Weak negative evolution

 $M_{500} \propto L_{500}^{0.62} \cdot E(z)^{-1.15}$ (Vikhlinin et al. 2009)

Reichert et al. (2011)

Flux determination

Weak negative evolution

 $M_{500} \propto L_{500}^{0.62} \cdot E(z)^{-1.15}$ (Vikhlinin et al. 2009)

Reichert et al. (2011)

Iterate

et al. (2012)

$$M_{500} \rightarrow R_{500} \rightarrow L_{500}$$

Arjen de Hoon

Conclusions References

Luminosity function

Adami, C., Durret, F., Benoist, C., et al. 2010, 509, A81 Bielby, R. M., Finoguenov, A., Tanaka, M., et al. 2010, 523, A66 Fassbender, R., Böhringer, H., Nastasi, A., et al. 2011, New Journal of Physics, 13, 125014 Lerchster, M., Seitz, S., Brimioulle, F., et al. 2011, , 411, 2667 Mühlegger, M. 2010, PhD thesis, Technischen Universität München Olsen, L. F., Benoist, C., Cappi, A., et al. 2007, , 461, 81 Reichert, A., Böhringer, H., Fassbender, R., & Mühlegger, M. 2011. 535. A4 Stanford, S. A., Romer, A. K., Sabirli, K., et al. 2006, , 646, L13 Takey, A., Schwope, A., & Lamer, G. 2011, 534, A120 Šuhada, R., Song, J., Böhringer, H., et al. 2012, , 537, A39 Vikhlinin, A., Burenin, R. A., Ebeling, H., et al. 2009, , 692, 1033 AIP