The origin of elements in cluster cores

Jelle de Plaa

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research (NWO)

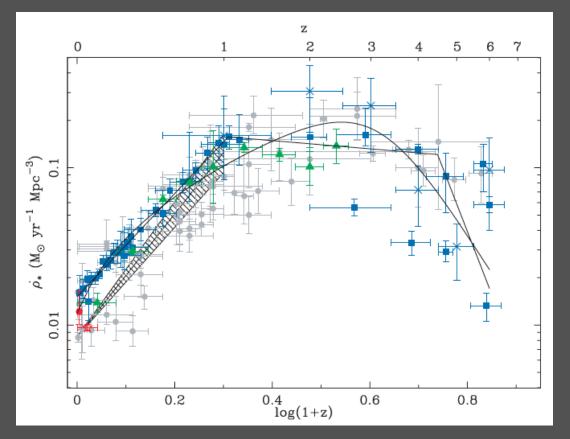
Outline

Introduction

- Chemical enrichment in the early universe
- Enrichment of the cluster ICM
- Origin of elements (SN Ia and core-collapse supernovae)

Measurements in local clusters

- Detection of chemical elements in X-rays
- Latest results
- Measurements in high-redshift clusters
- Future missions
 - Astro-H SXS Microcalorimeter array

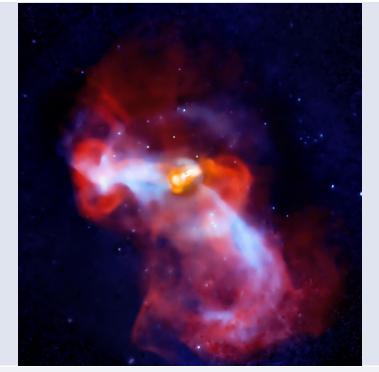

Population III stars

- First star formation starting epoch reionisation
- Thought to be massive stars, but also intermediatemass stars possible (Vangioni et al, 2011)
- Star formation starts around z~10
- Enriches pristine gas (H,He) with metals
- Pop III is minor contribution to later enrichment (Matteucci & Calura 2005)

Observed Star formation history

- The star formation rate has been measured up to z~7
- Peak of star formation is around z~2-3
- In clusters, the star formation declines more rapidly between z~1-2 due to ICM growth and feedback
- ~90% of the metals end up in a hot phase (Ferrara et al., 2005)

Hopkins & Beacom (2006)



Cluster enrichment mechanisms (1)

Galactic winds

AGN Feedback

Superwinds in M82

Metal uplift by AGN blown bubbles (M87)

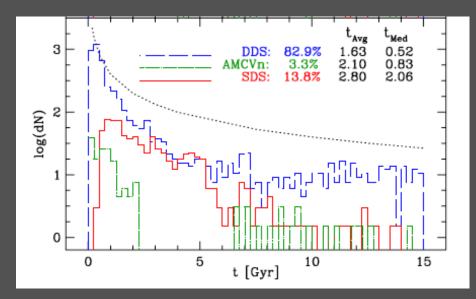
Cluster enrichment mechanisms (2)

Ram-pressure
strippingMerger induced
sloshingGalaxy-galaxy
interactions

Origin of elements in clusters

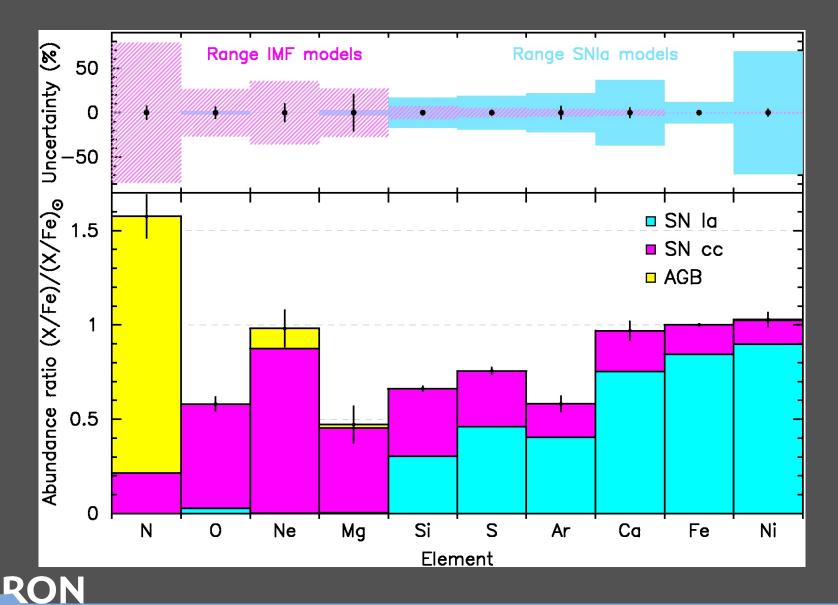
- Metals originate from star burst at z~2-3
- Main components:
 - Type Ia supernovae
 - Core-collapse supernovae
 - Intermediate-mass AGB stars

2A 0335+096


Sources of metals

Intermediate mass stars (AGB) M < 8 M _{sun}	Type Ia Supernovae	Core-collapse Supernovae		
•Nitrogen & Carbon	•High-mass elements (Si, S, Fe, Ni)	•Low-mass elements (O, Ne, Si)		
 Strong winds 	•Explosive ejection into ISM	•Explosive ejection into ISM		

Type Ia explosion mechanism

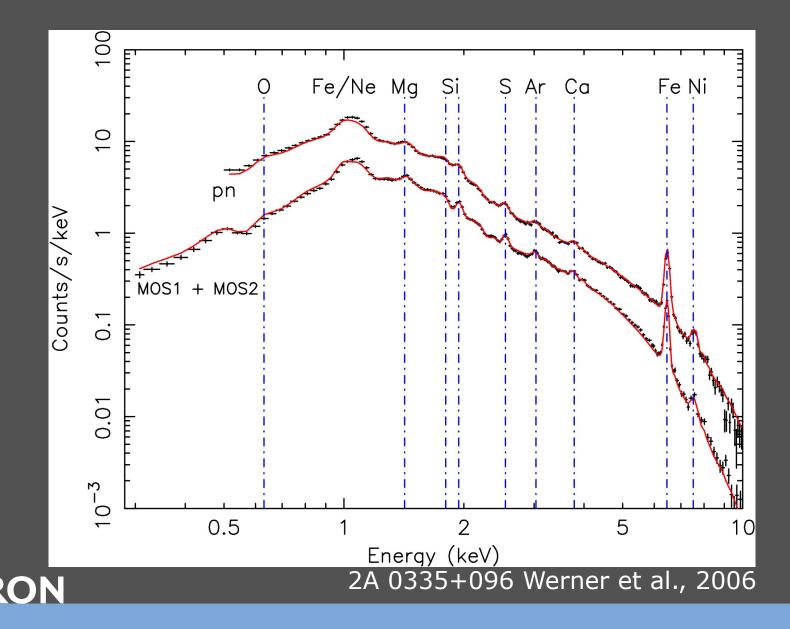

- Still discussion about progenitor type Ia
- Double degenerate scenario appears to dominate single degenerate.
- Type Ia's ignite when carbon burning temperature is reached

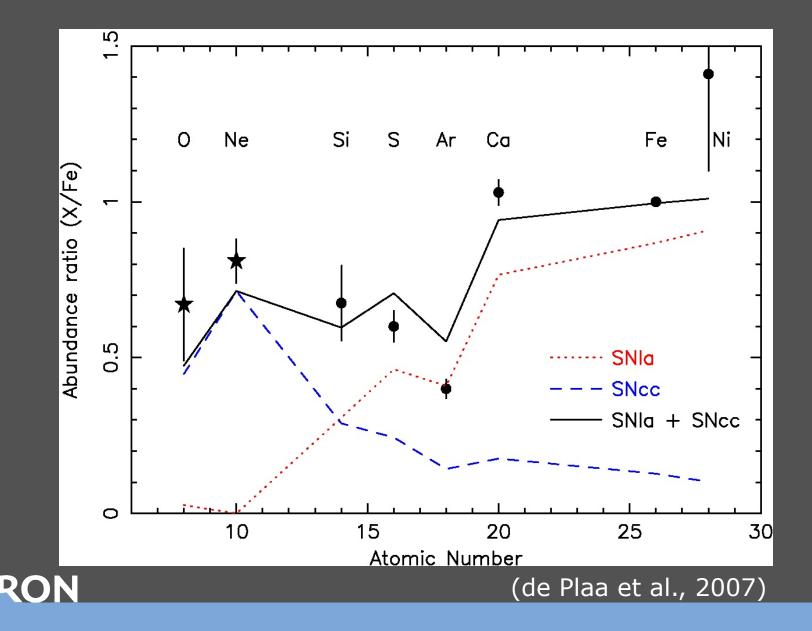
Ruiter et al., 2009

Expected ICM abundances from SN/AGB models

Open questions

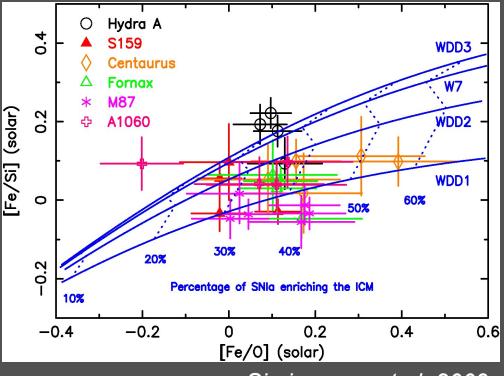
- What is the nature of the z~2-3 stellar population?
 - What was its IMF?
 - What was its initial metalicity (Pop III)?
- What is the SNIa explosion mechanism?
- How and when did the metals reach the ICM?


Clues and answers can be found in the hot ICM of local clusters!


Measurements in local clusters

EPIC Spectroscopy

Cluster enrichment with XMM-Newton


SNIa ratio

Model	SNIa/SNIa+SNcc	χ^2/dof
Constant		418/5
Solar	0.15 ± 0.08	64/4
W7	0.22 ± 0.06	152/4
W7 0	0.26 ± 0.07	104/4
WDD2	0.37 ± 0.09	84/4
WDD3	0.22 ± 0.06	105/4
CDD2	0.32 ± 0.08	86/4
Tycho	0.72 ± 0.17	26/4

De Plaa et al. (2007)

Improvements from XMM-Newton & Chandra

Simionescu et al. 2009

- Fe/Si and Fe/O ratio should discriminate between models
- Different clusters → slightly different answers

However, systematics in Si and O abundance found

TABLE 3 The Best-fit Parameters of the snapec Model Obtained Using T95, I99, and M10 SN Yields and XMM-Newton EPIC Spectra.

SN Ia	SN cc	kT_e	N^{SNe}	R	$R_{\%}^{Ia}$	χ^2
Model	Model	(keV)	$(\times 10^{9})$		(%)	(1683 dof)
T95 (W7)	T95	3.49 ± 0.02	1.06 ± 0.02	0.40 ± 0.01	28.6 ± 1.0	2737.7
I99 (W7)	I99	3.50 ± 0.02	1.06 ± 0.03	0.40 ± 0.01	28.6 ± 1.0	2737.8
I99 (W70)	I99	3.50 ± 0.02	1.06 ± 0.02	0.39 ± 0.01	28.1 ± 1.0	2723.9
I99 (WDD1)	I99	3.47 ± 0.02	0.82 ± 0.02	0.76 ± 0.03	43.2 ± 2.9	2893.6
I99 (WDD2)	I99	3.49 ± 0.02	0.89 ± 0.02	0.51 ± 0.01	33.8 ± 1.0	2783.9
I99 (WDD3)	I99	3.47 ± 0.02	0.91 ± 0.11	0.42 ± 0.02	29.6 ± 1.9	2749.8
I99 (CDD1)	I99	3.41 ± 0.01	0.82 ± 0.11	0.81 ± 0.03	44.8 ± 2.9	2927.6
I99 (CDD2)	I99	3.50 ± 0.02	0.87 ± 0.11	0.49 ± 0.02	32.9 ± 1.9	2767.1
M10 (W7)	I99	3.51 ± 0.02	1.06 ± 0.01	0.40 ± 0.01	28.6 ± 1.0	2744.1
M10 (CDEF)	I99	3.54 ± 0.02	1.36 ± 0.11	0.77 ± 0.03	43.5 ± 2.9	2775.8
M10 (CDDT)	I99	3.39 ± 0.02	1.11 ± 0.10	1.28 ± 0.07	56.1 ± 6.5	3627.5
M10 (ODDT)	I99	3.49 ± 0.02	0.83 ± 0.13	0.82 ± 0.04	45.1 ± 3.8	2842.3

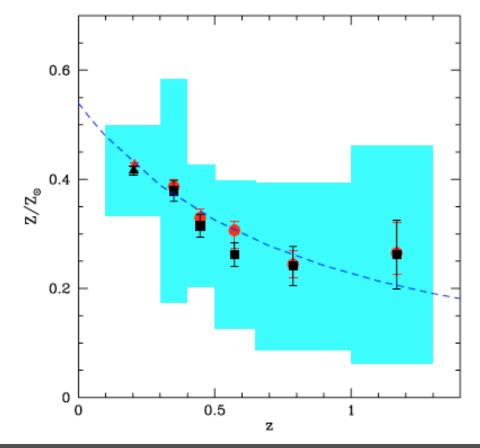
Bulbul et al. (2012) Arxiv 1205.2706

Other studies

- Suzaku observations slightly prefer W7 over WDD2 Confirm SNIa/SNcc ratio However, no Ar, Ca, Ni measurements (Sato et al., 2007&2009)
- Other XMM-Newton measurements (De Grandi & Molendi, 2009) SNIa/SNcc uncertainty dominated by SN model uncertainty Systematic errors abundances < 20-30%

Main point:

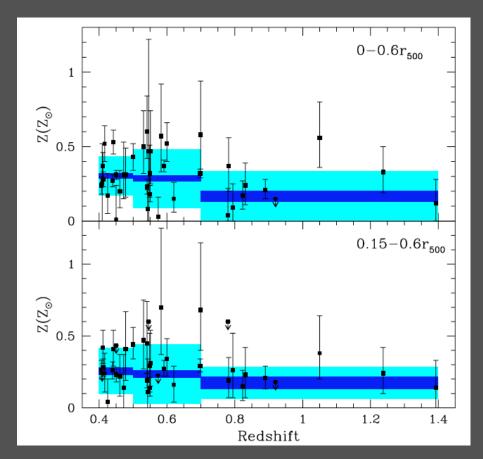
Abundances from X-rays are robust enough to test SN models!



Evolution with redshift

Redshift evolution of Fe (status 5 years ago)

- Strong hint of evolution of Fe in cores of clusters
- Factor of 2 since z=1.3
- Since star formation is suppressed, enrichment in core is mainly SNIa from cD
- Note that ejecting metals into ICM takes time



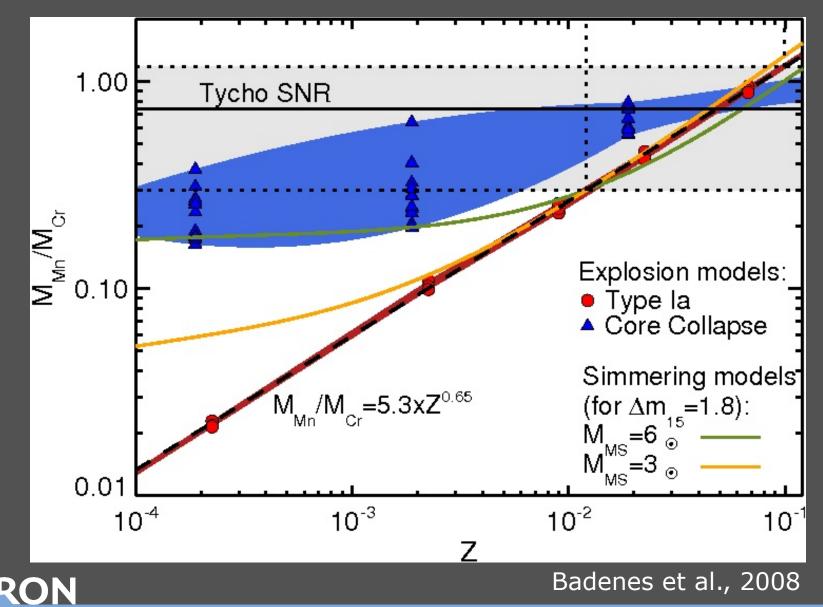
Balestra et al., 2007

Analysis of another cluster sample

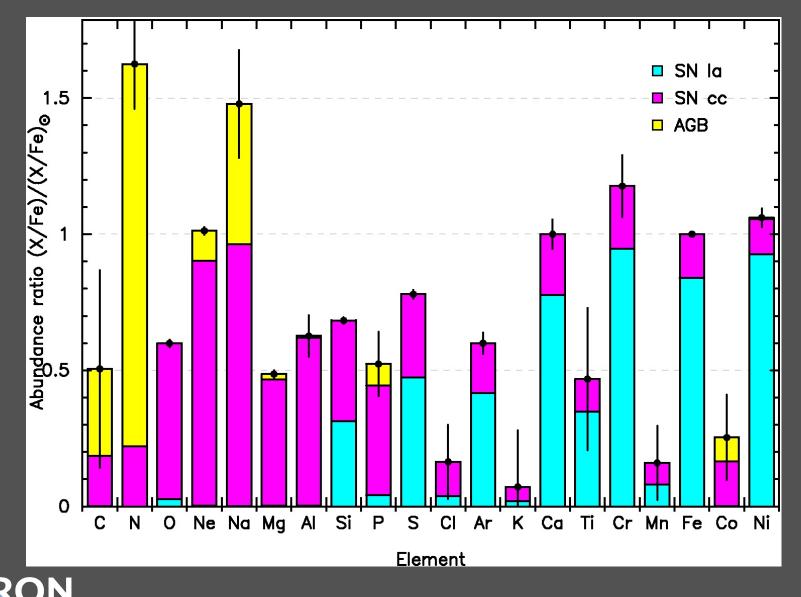
- Only 2 sigma hint of abundance decline with redshift
- Larger and deeper sample needed to obtain significant results
- No strong relation would imply early enrichment

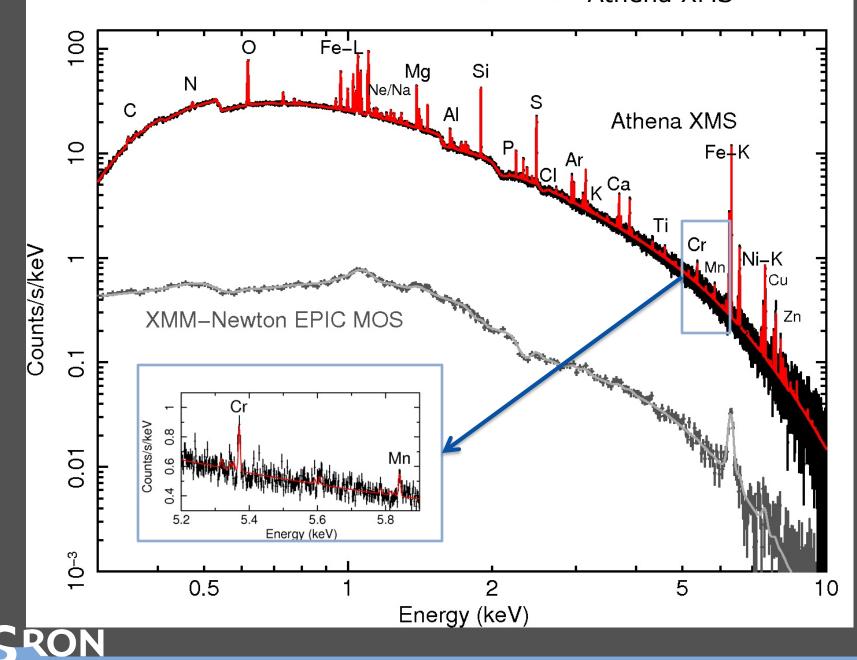
Baldi et al. (2012)

Future missions


New missions: ASTRO-H

- Microcalorimeter SXS
- Expected spectral resolution: ~5 eV
- Launch 2014
- High spectral resolution will help to resolve weak lines, also from less abundant elements!




Mn/Cr as tracer of SNIa progenitor metallicity

Astro-H simulation 100 ks typical cluster

Abell 1795 (100 ks) Athena XMS

Conclusions

- The cluster ICM contains clues about its chemical history
- Supernova type Ia models and IMFs can be tested/fitted
- Current measurements limited by:
 - Statistics, spectral resolution and systematic effects
 - Systematic errors are estimated to be <20-30%, but enough to constrain SNIa models
- Future work to improve results:
 - Improve atomic databases (investment!)
 - New instruments with high spectral resolution (Astro-H)

