

Francesca Civano (fcivano@cfa.harvard.edu, Post-doc at CfA),

Brusa M. (MPE), Comastri A. (INAF-OABo), Elvis M. (CfA), Salvato M. (IPP), Zamorani G. (INAF-OABo), and the COSMOS team

<u>The z>3 Sample</u>

The high-z AGN sample has been selected from the Chandra COSMOS Xray catalog (Elvis et al. 2009), combining the spectroscopic and photometric information available from the identification catalog of the 1761 X-ray sources (Civano et al. 2011).

To roughly estimate the obscuration affecting the sources and derive the intrinsic luminosity: hardness ratio (HR=(H-S)/(H+S), where H and S are the counts in the 2-7keV and 0.5-2keV bands, plus curves of constant NH (Γ =1.4) as function of z (top panel).

9 of the soft-band detected \rightarrow candidate to be obscured. ✓ 9 of the sort-band detected → candidate to be obscurat. ✓ 23 soft-band sources with no hard-band detection (upper limit) → no obscuration but only faint below the hard-band flux limit. ✓ 9 hard-band only detected sources (lower limit) → highly obscured NH>5x10²³ cm⁻² → not visible at the soft band flux limit of C-COSMOS.

Number Counts

We derived the 0.5-2keV number counts by folding the observed flux distribution of the z>3 sources through the sky coverage versus flux curve of C-COSMOS (Puccetti et al. 2009).

Blue dashed area represent the predictions from the Gilli et al. $(2007)^1$ and the Aird et al. (2010) models. Good agreement is found but the data cannot really choose between the models. Choose between the models. Extending this agreement to fainter fluxes, at both z>3 and z>4, where the C-COSMOS sample is 3 times larger than the XMM one (12 sources wrt 4).

Redshift

 $\checkmark Comparison with the prediction of a basic model of quasar activation by major mergers of dark matter haloes (Black lines; Shankar 2009, 2010; Shankar et al. 2010)$

 $^{\prime}A$ prolonged quasar light curve characterized by a long, post-peak activity phase, and a higher minimum halo mass (~3 $10^{12}~M_{sun}$) hosting quasars (dot-dashed line) is preferred with respect to a model with smaller halo mass (dashed line, Shen 2009).

'Gilli et al. model: X-ray LF parameterized with a luminosity dependent density evolution (LDDE), and an high-z exponential decline with the same functional form adopted by Schnidt et al. (1995; $\psi(z) = \psi(z_0) \times 10^{-6.012r_0^2}$ and z_2^{-2} .7) to fit the optical luminosity function between 2.5cze6, corresponding to one e-folding per unit redshift.

Future surveys

Doubling the coverage of the COSMOS area and increasing the depth by a factor 2:

•Double the z>5 and high Lx sample •Increase the z>3.5 low-luminosity AGNS sample, where the models diverge strongly.

Such a survey, performed with the same observational strategy of C-COSMOS (i.e. homogeneous exposure time and same tiling), (i.e. would take approximately 6 Ms with Chandra, the scale of the X-ray Visionary Projects.

P(Mpc⁻

10-

Number of Sources													The sample includes
z	Total			Spec-z			Phot-z			Phot-z*			101 sources with
	S	Н	F	S	Н	F	S	Н	F	s	Н	F	(31 sources; col.1)
>3	81	14	6	29	2	0	36	10	4	16	2	2	or photometric
>4	14	1	1	6	0	0	7	1	0	1	0	1	redshift >3 or
>5	4	0	1	2	0	0	2	0	0	0	0	1	$zphot+1\sigma_{zphot} > 3$
		(S	= 0.5-2	- (20 sources; col. 3).									

oThe highest-z narrow line sources (z=4.909,5.07) in the sample

show such a spectrum.
=> Three sources show strong narrow (FWHM~1000 km/s) emission lines (mostly Ly α) over a very faint almost zero continuum as in CID-1505.

Their Ly α strength (EW-250 A) is comparable to the strongest lines found in Ly α emitter samples (Murayama et al. 2007).

Space Density

The combination of soft, hard and full band detected sources allows to account for the presence of highly obscured sources in the space density without any model assumption. $\log L_v > = 44$

√Space density of X-ray selected quasar up to z~5 at bright luminosity (top) ~Agreement with the predictions from the LDDE Gilli et al. (2007) model at bright X-ray luminosity and at all redshift (top). Confirming the declining space density as observed in the optical. Doubling the sample, at least, in the z>5 bin would strengthen this result. The LADE Aird et al. (2010) model is over estimating the data at z>4 at 2σ , even when the rerrors are taken into account.

density low space at luminosity and z>3 in the X-ray band has not been reported previously. No strong constraints on the end (left) due to the flux limit of the survey, thus the lack of sources beyond z>3.5 ✓Different results have been Pointerent results have been recently found in the optical band by Glikman et al. (2010, 2011) and Ikeda et al. (2011), with respect to previous studies 1. 201 ction (e.g., Fontanot et al. 2007).

Bibliography: Aird, J., et al. 2010, MNRAS, 401, 2531; Brusa, M., et al. 2009, Apl, 693, 8; Brusa, M., et al. 2010, Apl, 716, 348; Capak et al. 2011, Nature 470, 233; Elvis, M., et al. 2009, AplS, 184, 158; Fontanot, F., et al. 2007, A&A, 461, 39; Gillin, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79; Gilkama, E., et al. 2010, ApJ, 710, 1498; Cilkama et al. 2011, ApjL 728, L25; Ikeda, H., et al. 2011, ApjL 728, L25; Koekemoer, A.M., et al. 2004, ApjL cool, L123; Murzyama, T., et al. 2007, ApjS, 172, 523; Shankar, F. 2009, New Astronomy Reviews, 53, 57; Shankar, F. et al. 2009, ApjS, 185, Apj, 718, 2013; Shankar, F. 2010, LAU Symposium, 267, 246; Puccetti, S., et al. 2009, ApjS, 185,

Text and Figures are from Civano et al. 2011 arXiv:1103.2570 ApJ submitted

This work is supported by Chandra Award No. GO7-8136A, SI Scholarly Program and Blanceflor Boncompagni Ludovisi Foundation

Redshift