Resolving the nature of the dipping/flaring branch in Cygnus X-2
Andrzej Gibiec 1, Monika Balucińska-Church 2, Michael J. Church 2
1 Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Cracow, Poland
2 School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK

1. Abstract
We resolve a long-term general confusion between flaring and dipping in Cygnus X-2. Using one-day multi-wavelength observations with XMM, Chandra, and the European radio network, we show that the so-called flaring/dipping actually consists of absorption dips due to partial covering of the extended ADC Comptonization emission by structure in the outer disk. Examination of RXTE ASM data over 15 years shows that dipping occurs at all orbital phases but is peaked at phase ∼0.7 corresponding to the impact of the accretion stream on the outer disk.

2. Dipping / flaring confusion
The Z-track Low Mass X-ray Binary Cygnus X-2 exhibits 3 branches: Horizontal (HB), Normal (NB) and Flaring (FB). In flaring, the intensity and the hardness increase. Dipping is seen as intensity decreases, but when plotted in a colour-colour diagram it appears very similar to the standard flaring branch. Therefore, it has been commonly believed that there are two types of flaring, one consisting of intensity fades, and the second being of ‘a dipping type’, and important consequences of this confusion followed. Dipping misinterpreted as flaring suggested that the mass accretion rate was highest on the FB giving birth to the standard view in which Mdot increases monotonically on the Z-track in the sense HB-NB-FB [8]. In contrast, it has been shown from spectral analysis of the Cygnus X-2 like Z-track sources (Cyg X-2, GX 340-0 and GX 5-1) [1], that Mdot is actually lowest in flaring and that it consisted of unstable nuclear burning. This was based on the agreement of the observed onset of unstable burning on the neutron star with the theoretical criterion for the onset of unstable He burning [3].

3. What is dipping?
Some LMXB, called dippers, exhibit intensity dips in their lightcurves which were soon attributed to obscuration by the bulge in the outer accretion disk due to the high (65-80 degrees) inclination of such systems [6][9]. Church et al. (1997) showed that dipping in LMXB sources can be explained in terms of the ‘Extended ADC’ [4] in which the predominant X-ray emission is from an extended accretion disk corona, plus blackbody emission of the neutron star. During dipping, the bulge in the outer disk progressively overlaps an increasing fraction of the ADC. The extended nature of the corona has since then been strongly supported [7][10].

4. Multi-wavelength observation

5. The nature of dipping
The results show clearly that dipping consists of absorption events as seen in the dipping class of LMXB and is unconnected with flaring.

6. Dipping masquerading as flaring
Flaring and dipping in Colour-Colour and Hardness-Intensity diagrams

7. Spectral analysis at several depths of dipping is shown in Fig. 5. Only the Comptonized emission (light blue) was removed in dipping while remarkably, the neutron star blackbody (red) was not, in strong contrast with the dipping LMXB in general.

The table shows that the covering factor f of the ADC by absorber increased to 42% in dipping and the column density increased to 4x10^17 cm−2 consistent with absorption by material in the outer disk.

8. Conclusions
• We show that dipping is not a type of flaring but is absorption by structure in the outer disk and peaks at orbital phase 0.7 indicating absorption in the bulge where the accretion flow impacts.
• The concentration of dipping at the Soft Apex where the source has the lowest intensity may show that only at this position is the outer disk not totally ionized.
• The argument that the Cyg-like sources (Cyg X-2, GX 340+0 and GX 5-1) all have high inclination, distinguishing them from the Sco X-1 like sources is not valid, as we have also shown that dip-like events in GX 340+0 and GX 5-1 are NOT absorption events [5].
• That mass accretion rate does not increase in flaring [1] removes the motivation for the “standard view” that it increases along the Z-track in the direction HB → NB → FB.

References and Acknowledgements

The research was partially supported by the Polish Ministry of Science and Higher Education grant 3946/B/H03/2008/34.