

XMM-Newton Observations and Multi-Wavelength Studies of the TeV Source HESS J1427-608

Nu. Komin¹, J.-F. Glicenstein², G. Pühlhofer³, F. Acero⁴, T. Bulik⁸, A. Fiasson¹, K. Kosack⁵, E. Moulin², R. Terrier⁷ for the H.E.S.S. collaboration

¹LAPP, IN2P3/CNRS, Annecy-le-Vieux, France ²SPP/Irfu, CEA, Centre de Saclay, France ³IAAT, Universität Tübingen, Germany ¹LUPM, IN2P3/CNRS, Montpellier, France ²SAp/Irfu, CEA, Centre de Saclay, France °Warsaw University, Astronomical Observatory, Warsaw, Poland ^APC, IN2P3/CNRS, Paris, France * komin@lapp.in2p3.fr

The TeV gamma-ray source HESS J1427-608 was discovered during the H.E.S.S. Galactic Plane Survey. At the time, there was no evidence for a counterpart at other wavelengths, and it was therefore considered a dark, or unidentified, source. In this contribution, we will present a new multi wavelength view of this enigmatic source. Furthermore, additional H.E.S.S. observations have nearly doubled the exposure in the TeV domain, confirming earlier results. In order to investigate the keV X-ray environment in the direction of the TeV gamma-ray emission, dedicated observations were carried out with XMM-Newton. The results of a search for both point-like and diffuse X-ray emission will be shown. Archival radio data at 843 MHz from the Molonglo Galactic Plane Survey and ¹²CO line emission were also analysed to complement the high-energy view of this source and to search for any evidence of a coincident molecular cloud. We describe the spectral energy distribution with models for leptonic and hadronic emission. Different scenarios for the nature of this source, in particular a hypothetical pulsar wind nebula, will be discussed.

The H.E.S.S. Detector

- High Energy Stereoscopic System
- 4 Imaging Atmospheric Cherenkov telescopes 107m² mirror surface each photo-tube camera with 960 pixels

- energy range: ~100 GeV up to several 10 TeV
- single shower resolution better than 0.15
 energy resolution ~15%

The TeV source HESS J1427–608 • discovered in the HESS Galactic Plane survey

- no counterpart at other wavelengths [Aharonian et al. 2008]
- new data since discovery
- currently 36h exposure
- RA 14^h27^m(58±7)^s, Dec 60°50'(35±41)"
- intrinsic extension (corrected for the instrument's resolution) $0.06^{\circ}\pm0.01^{\circ}$ (1σ of 2-dimensional Gaussian source profile)

- smoothed HESS excess map (colour scale: excess counts)
- 4 and 6σ significance contours (green)
- intrinsic source size (best fit value, black circle)
- spectrum extraction region (white circle)

- HESS energy spectrum
 - energy spectrum follows power law

 - flux normalisation at 1 TeV: (1.1±0.2) 10⁻¹² TeV⁻¹cm⁻²s⁻¹ energy flux between 1 and 10 TeV: 2.4 10⁻¹² erg cm⁻²s⁻¹

 - best fit spectrum (green) and reconstructed data points (black) • compatible with previous publication (blue)

Search for X-ray counterpart

- XMM-Newton observations
 ObsID 0504990101
- 24ks exposure (15ks after flare removal)
- several faint point-like sources
 XMM J142754–6051.1 in centre of TeV source, could be related to TeV source too faint (0.020±0.002 cts/s) for detailed energy spectrum

- XMM count map 0.5 4.5 keV
- smoothed with Gaussian kernel of 18"
- HESS significance contours (green)
 HESS intrinsic source size (white)
 point-like source XMM J142754–6051.1 (magenta)

- XMM flux map 0.5 4.5 keV [cm⁻²s⁻¹]
- point-like sources removed
- instrumental background from blank sky observations [Carter&Read 2007] smoothed with Gaussian kernel of 54"
- no diffuse emission
- upper limit on X-ray flux for HESS source I(0.5 – 4.5 keV) < 7.5 10⁻¹³ erg cm⁻²s

Archival Radio Data

- ^d epoch Molonglo Galactic Plane Survey [Murphy et al. 2007]
 • MGPS J142755–605038 (blue circle)
- extended: 92.4" x 66.9"
- but smaller than HESS source
- 843 MHz radio image
 - HESS significance contours (green contours)
- HESS intrinsic source size (black circle)

Search for Molecular Cloud

- CO emission line data [Dame et al. 2001]
 peak around -50 km s⁻¹

- corresponds to 3 or 9 kpc cloud has much larger spatial extent than HESS source cloud is very dense
- if at 3 kpc: 1600 cm-3
- if at 9 kpc: 360 cm
- CO intensity map

preliminary

- HESS significance contours (green)
- HESS intrinsic source size (black)

Spectral Energy Distribution

- radio MGPS J142755-605038 (black triangle) (Note: the radio source has a smaller angular extent.)
- X-ray upper limit (blue line)
- Fermi (blue boxes)
- no counterpart in the 1st catalogue
- the spectral data of the faintest source in 1st catalogue which is less than 5° from Galactic Plane (1FGL J0513.0+4048) is considered as upper limit
- HESS (black circles)
- leptonic model
- electron spectrum with index 1.6 and exponential cut-off at 9 TeV
- magnetic field of 3µG, inverse Compton scattering off CMB
- hadronic model:

Discussion

- proton spectrum with index 2.0 and exponential cut-off at 28 TeV

TeV source with possible radio counterpart (angular size not matching)
 X-ray point-like source possibly related; no diffuse X-ray emission → upper limit on flux

- lapp
- leptonic model likely: hypothetical pulsar would need spin-down power of ~10³⁴ (d/1 kpc)² erg s⁻¹
 Fermi non-detection disfavours hadronic model, further detailed analysis necessary

• no MeV/GeV (Fermi) counterpart