It is believed that the global baryon content of clusters of galaxies is representative of the matter distribution of the universe, and can, therefore, be reliably determined the matter density parameter Ω_m. The basic assumption of these methods is that the global baryon fraction and the mass-to-light ratio are constant in cluster samples and they fairly represent the matter and light distribution of the Universe. This hypothesis is challenged by the growing evidence from optical and X-ray observations that the total baryon mass fraction and mass-to-light ratio increases towards rich clusters. In this context, we investigate the dependence of stellar, and total baryon mass fractions as a function of mass. To do so, we used a subsample of 19 clusters extracted from the X-ray flux limited sample HIFLUGCS that have available DR-7 SDSS data. From the optical analysis we derived the stellar masses. Using XMM-Newton we derived the gas masses. Then, we adopted two procedures to derive the total mass. In the first one, we calculate the total mass from the velocity dispersion using optical spectroscopic data. The second one is to use a scaling relation and use the gas mass as a proxy. Then, adding the gas and the stellar mass fractions we obtain the total baryonic content that was found to increase with cluster mass, reaching WMAP-7 prediction for clusters with $M_{200} \approx 10^{14}$ M_{\odot}. The stellar mass fraction diminishes as cluster mass increases, suggesting a difference in the amount of stars formed per unit of halo mass. That is, the efficiency of star formation varies on cluster scales that lower mass systems are likely to have higher star formation efficiencies. It follows immediately that, the dependence of the stellar mass fraction on total mass results in an increase of the mass-to-light ratio from lower to higher mass systems. We also discuss the consequences of these results in the context of determining the cosmic matter density parameter Ω_m.

RESULTS

In both panels we show the results derived for Ω_m for the gas-mass fraction (red circles), stellar mass fraction (green stars), and baryon-mass fraction (black triangles) as a function of the total mass. For comparison, we show some of the results in the literature from Dai et al. (2010), Puchwein et al. (2010) and Sun et al. (2009) in the left panel and from Giocoli et al. (2009) and Lin et al. (2003) in the right panel. The horizontal line on the top of the plot represents the WMAP-7 result for the cosmic baryon fraction (Jarosik et al. 2011).

SAMPLE AND DATA ANALYSIS

Sample: 19 HIFLUGCS clusters have DR-7 SDSS optical data available and are unbiased with respect to the original sample; To analyze the matter distribution in galaxy clusters through the baryon mass fraction, the fundamental step relies on total, gas, and stellar mass estimates. We derived all quantities within r_{200} and each determination is explained below:

1- Gas mass estimates
We determined the gas masses through the XMM-Newton X-ray data analysis.

2- Stellar mass estimates

- Constrain red-sequence (RS): Define red and blue galaxies within r_{200}
- Histogram of the number of galaxies per bin of 0.05 M_{\odot}/Lum using luminosity function (LF).

- Use cluster RS: Define red and blue galaxies within r_{200}
- Fit the background LF with a power-law:
- Statistical subtraction.

Background galaxies in an outer annulus beyond $8 \times r_{200}$

- The power-law fit to the background galaxies is then subtracted from the overall LF;
- Including the LF we have the total luminosity;
- Adopting a different mass-to-light ratio for red and blue galaxies (taken from Kauffmann et al. 2003) we derived the stellar masses.

3a- Total mass estimates using the velocity dispersion

- We used the velocity dispersion, which is independent from X-ray and photometric DR-7 SDSS data to derive total masses.
- Taking the harmonic velocities measured within an aperture of 1.2 Abell radii (from Zhang et al. 2011), we followed the method described in Sect. 3 of Biviano et al. (2006).

3b- Total mass estimates using mass as a proxy

We adopted two procedures to derive the total masses. In the first one, we derived the total masses from the X-ray data, using a scaling relation; We adopted this procedure instead of using the standard measurement of X-ray data under the assumption of hydrostatic equilibrium (HE) because the present sample contains relaxed and non relaxed clusters where the HE assumption may not be valid.

RESULTS

Left panel: We show the results obtained using independent methods: XMM-Newton X-ray data for the gas mass determination, photometric optical DR-7 SDSS for stellar mass measurements, and velocity dispersion for total mass determination.

- $M_{\text{gas}}(r_{500})$: we show M_{gas} for r_{500}, the radius enclosing a density 500 times the critical density of the universe.
- $M_{\text{star}}(r_{500})$: the mass of all stars within r_{500}.
- $M_{\text{tot}}(r_{500})$: the total mass at r_{500}.

Right panel: We present the results using the XMM-Newton X-ray data for the gas mass determination, photometric optical DR-7 SDSS for stellar mass measurements, and the scaling relation (presented in Fig. 1) to derive the total mass using the gas mass as a proxy.

Baryon fraction dependence on cluster mass

The gas-mass fraction increases with the total mass as $f_{\text{gas}} = (10^{0.127 \times M_{200}})^{-0.13}$. In order to precisely constrain the slope, we combine our 19 clusters and the groups in Sun et al. (2009), which show an increasing gas mass fraction as a function of the M_{200}, i.e. $f_{\text{gas}} = (10^{0.06\times M_{200}})^{-0.13}$. This shows the importance to have a wide mass range to calibrate the mass dependence of the gas-mass fraction. The stellar mass fraction in our observational sample decreases with increasing cluster mass, i.e. $f_{\text{star}} = (10^{-0.12 \times M_{200}})^{0.24}$. The best fit for the total baryon fraction still appears flat as a function of the total mass within its error: $f_{\text{baryon}} = (10^{-0.06 \times M_{200}})^{0.07}$. Toward the high-mass end, the value gradually approaches the WMAP-7 prediction, reaching it at $M_{200} = 7.7 \times 10^{14}$ M_{\odot}.

Mass-to-light ratio

The total mass-to-light ratio decreases toward low-mass systems, following the relation $M/L_\text{r}\propto 10^{0.02(\text{and}) M_{200}}$. This result is a direct consequence of the varying star formation efficiency on cluster scales. In this work the M/L varies from 60 M/L to almost 300 M/L. Total mass-to-optical light ratio does not show evidence of a flattening, and the best-fit leads to a M/L = 241 M/L for clusters with a total mass of 10^{15} M_{\odot}.

Constraints on Ω_m

We derived the matter density parameter using the Oort (1958) technique and also from the baryon-to-total mass ratio. Using these two approaches, we obtained 0.07 < Ω_m < 0.3 and 0.15 < Ω_m < 0.27, respectively. Using the baryon-to-total mass ratio to compute Ω_m seems to give narrower range and more accurate constraints.

All the following results are a summary of the work presented in:

Zhang, T. F.; Zhang, Y.Y; Reichert, T. P.; Schneider, P. et al. submitted to AJP.

References:

Acknowledgments:

We thank D.unger, F. Durlet, Pavel Kouprka, and G. B. Lima Neto for constructive discussion. We also acknowledge Jose Fritschi for providing the feedback relation between stellar masses compiled from the SDSS DR7 photometric data and spectroscopic data. T. F. acknowledges support from the FAPESP through grants 2006/52319-8 and 2008/53413-7 as well as from the CAPES through BEX-8506-10-8. Y.Y.Z. acknowledges support from the German BMBF through the Verbundforschung unter grant No. 05X3251S and travel support from the Deutsche Forschungsgemeinschaft PIRGS project 1771 (D.P.); acknowledges support from the German BMBF through the Verbundforschung unter grant No. 05F05 045S and the kind hospitality of the KFC. E.S. is supported by the DFG through Transregio 31: T.R.H. acknowledges support of the UFURihen Heinrich Hertzstiftung. J.R. thanks NOVA.