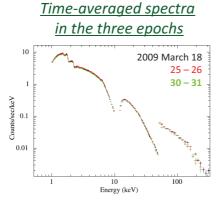
Suzaku Observations of GX 339 – 4 in the Low/Hard State

Yoshihiro Ueda & Megumi Shidatsu

Department of Astronomy, Kyoto University Contact: ueda@kusastro.kyoto-u.ac.jp, shidatsu@kusastro.kyoto-u.ac.jp

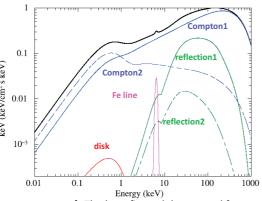
Abstract


We present the results from X-ray and near-infrared observations of the Galactic black hole binary GX 339 - 4 in the low/hard state with Suzaku and IRSF in 2009 March. The spectrum in the 0.5 – 300 keV band is dominated by thermal Comptonization of multicolor disk photons, with a small contribution from a direct disk component, indicating that the inner disk is almost fully covered by hot corona with an electron temperature of ≈ 175 keV. The Comptonizing corona has at least two optical depths, $\tau \approx 1$ and ≈ 0.4 . Analysis of the iron-K line profile yields an inner disk radius of 13.3 (7.3 – 19.7 at 90 percent confidence level) times the gravitational radius, with the best-fit inclination angle of $\approx 50^{\circ}$. This radius is consistent with that estimated from the continuum fit by assuming the conservation of photon numbers in Comptonization. Our results suggest that the standard disk of GX 339 – 4 is likely truncated before reaching the innermost stable circular orbit (for a non rotating black hole) in the low/hard state at ~1 percent of the Eddington luminosity. The one-day averaged near-infrared light curves are found to be correlated with hard X-ray flux with a power law slope of 0.45. The reader is referred to Shidatsu et al. (2011, arXiv: 1105.3586) for the details of these observations and results.

1.1 Suzaku observations in the low/hard state

We performed three sequential ToO (Target of Opportunity) observations

of the Galactic black hole candidate GX 339-4 with Suzaku on 2009 March 18, 25-26, and 30-31, each for a net exposure of ~40 ksec, when it became active and stayed in the low/hard state.


From the observations, we achieved the best quality broad-band (approximately 1-300 keV) spectra that have ever obtained in the low/hard state of GX 339-4.

The three spectra exhibit almost the same shape, and therefore we coadded the data of the three observations to use for the analysis.

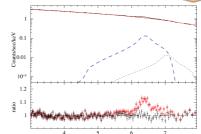
1.2 Analysis of the Suzaku spectra

To constrain the origin of the X-ray emission, the broadband time-averaged spectrum was simultaneously fitted with a model of emission from a standard accretion disk and its thermal Comptonization by a spherical hot corona.

- two thermal Comptonized components, with the same electron temperature but different optical depths
- direct component of the disk emission is weak compared with Comptonization
- ↑ The best-fit model corrected for the interstellar absorption. Each component is separately plotted.

bost fit values

pest-fit values		
Component	Parameter	Value
Disk	kT _{in} (keV)	0.215 ± 0.001
Corona	kT _e (keV)	172^{+4}_{-3}
	T	0.25±0.02, 0.91±0.02
Reflection	$\Omega/2\pi$	0.43 ± 0.01


> The Comptonizing corona has a more complex geometry than that assumed in a single zone, spherical model inner disk is almost fully covered by hot corona

1.3 Disk evolution in the low/hard state

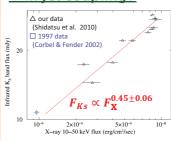
We analyzed the 3–8 keV Suzaku spectra using a relativistic disk emission

line model for the iron-K α and KB fluorescent lines.

2008/09 (re-analysis of Tomsick et al. 2009) $L_{1-100 {\rm keV}} \approx 0.0014 \ L_{\rm Fdd}$

2009/03 (our data) $L_{\text{1-100keV}} \approx \text{0.02}\ L_{\text{Edd}}$ $R_{\rm in} = 13.3^{+6.4}_{-6.0} R_{\rm g}$

 $R_{\rm in} = 190^{+710}_{-90} R_{\rm g}$


 R_g : gravitational radius (GM/c^2)

- standard disk is truncated in the low/hard state
- Inner edge of the disk moves inward according to luminosity

2. Near-IR observations and results

We carried out JHKs-band photometric observations on 11 nights over a period from 2009 Feb 27 to 2009 March 23, using IRSF (Infra-Red Survey Facility) 1.4 m telescope at the South African Astronomical Observatory (SAAO).

disk-jet coupling?

↑ The relation between the oneday averaged X-ray (15-50 keV) and IR (Ks) fluxes of GX 339-4 with Swift/BAT and IRSF/SIRIUS in 2009 March, fitted by a power law.

Synchrotron emission

from jet our data (Shidatsu et al. 2010) △ 1981 near-IR&optio 1013 (Corbel & Fender 2002) 1011 1010 109 □1992-1999 radio 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 Frequency (Hz)

↑ Multi-wavelength SED corrected for interstellar absorption/extinction.

Radio: Optically thick synchrotron Near-IR: Optically thin synchrotron Optical: Reprocessed thermal emission from irradiated disk

The magnetic field and size of the jet base are $\sim 10^4$ G and $\sim 10^9$ cm, respectively Synchrotron self Compton component contributes < 0.4% of the total X-ray flux