Exploring X-ray and radio connection of type 1 AGN up to z ~ 2.3

L. Ballo

F.J. H.Heras, X. Barcons, F.J. Carrera IFCA (CSIC-UC), Santander, Spain

OUTLINE

Introduction
 Sample selection & properties
 M_{bh}, L_{bol} & Eddington ratios
 Radioloudness & SED

Introduction (I)

AGN emission: X-ray ↔ disk; jet contribution ? optical ↔ mainly reprocessing radio ↔ jet; reprocessing ?

Dichotomy in radioloudness R:

real: fundamental physics ? evolution ?

unreal: incompleteness of small samples ?

Relevant observables: M_{ph} , λ_{Edd} , \Re , and spin (?)

 \Re vs M_{bb} : still debated

λ_{Edd} vs R : changes in accretion mode (Ho 02);
 parallel track (Sikora+07)

spin paradigm: intermittent radio emission (Sikora+07) vs prograde/retrograde systems (Garofalo+10)

Introduction (II)

Deep multiwavelength catalogues to investigate
origin of radio emission
interplay between radio & X-ray
SED, R as function of L (eg, the study of X-ray properties of RL & RI QSOs presented by *Miller+11*)
the origin of the local dichotomy RL/RQ

Next step: understanding physical properties & accretion regimes

Main sample

- 2XMMi-SDSS DR7 cross-correlation (Pineau+11)
- with optical spectra
- classified as QSO or GALAXY
- **FWHM of MgII@\lambda2799Å > 900 km/s (BLR)**

⇒ 878 type 1 AGN with 0.3 < z < 2.3</p>

cross-correlation with FIRST
 837/878 AGN covered by
 FIRST – 100 detections

Control sample

SDSS + FIRST

- same optical constraints
- NOT in the 2XMMi (ie, not covered or not detected)

⇒ 5700 type 1 AGN (only 11 observed but not detected)

X-ray counterpart → cross-correlation with RASS

768/5700 AGN detected with ROSAT

Control sample

SDSS + FIRST

- same optical constraints
- NOT in the 2XMMi (ie, not covered or not detected)

⇒ 5700 type 1 AGN (only 11 observed but not detected)

X-ray counterpart → cross-correlation with RASS

768/5700 AGN detected with ROSAT

main sample & RASS

 \Rightarrow

78/878 AGN in RASS - 22 radio-detected

L. Ballo - X-ray Universe 2011

Nuclear properties: L_{bol}

1. 2XMMi $F(0.2-12 \text{ keV}) \rightarrow N_{H,gal}$ -corrected L(2-10 keV)2. $L(2-10 \text{ keV}) \rightarrow L_{bol}$ $(k_{\chi,bol} \text{ from } Marconi+04)$ intrinsic N_{H} ? HRs analysis \rightarrow mean correction factor: $L_{bol}^{abs.PL}/L_{bol}^{PL} \sim 1.2$

CHECK: L_{bol} from [OIII] (*Lamastra*+09) - 135/878 AGN (0.35 $\leq z \leq 0.83$)

Nuclear properties: M_{bh}

M_{bb} for 864 QSO (cross-correlation with Shen+10)

 $M_{\rm bh} = 10^{6.86} \, [FWHM(MgII)_{1000}]^2 [\lambda/_{\lambda}(3000 {\rm \AA})_{44}]^{0.5}$

Nuclear properties: M_{bh}

M_{bb} for 864 QSO (cross-correlation with Shen+10)

 $M_{\rm bh} = 10^{6.86} \, [FWHM(MgII)_{1000}]^2 [\lambda I_{\lambda} (3000 {\rm \AA})_{44}]^{0.5}$

 14 Seyfert-like AGN:
 FWHM[MgII(2799Å)]
 from F_{λ,cont}@2799Å + template of QSO to L_{λ,cont}@3000Å

Nuclear properties: M_{bh}

M_{bb} for 864 QSO (cross-correlation with Shen+10)

 $M_{\rm bh} = 10^{6.86} \, [FWHM(MgII)_{1000}]^2 [\lambda/_{\lambda}(3000 {\rm \AA})_{44}]^{0.5}$

 14 Seyfert-like AGN:
 FWHM[MgII(2799Å)]
 from F_{λ,cont}@2799Å + template of QSO to L_{λ,cont}@3000Å

Nuclear properties: A_{Edd}

$\Lambda_{Edd} = L_{bol} \ [erg \ s^{-1}] / (1.3 \cdot 10^{38} \ M_{bh} / M_{sun} [erg \ s^{-1}])$

Radioloudness (I)

837 AGN in FIRST:

$\Re \equiv F@5GHz/F@2500Å$

OPT: • F_A@2500Å from F_{A,cont}@2799Å + QSO template

RADIO:

100 detected sources: FIRST F@1.5GHz,obs

737 undetected AGN: FIRST UL *F^{u.1}*@1.5GHz,obs

$$a \propto v^{-\alpha R}$$
 $a = 0.8$

from F@1.5GHz observed frame to F@5GHz rest frame

L. Ballo - X-ray Universe 2011

13

Radioloudness (II)

84 RL
15 det. RI
515 1<\mathcal{R}^{u.l.}≤10
12 RQ (det. & undet.)
211 n.c.</pre>

768 ROSAT-det. 4931 ROSAT-undet.

NO statistical difference: KS-probability ~ 0.11

NO clear dichotomy (BUT: high number of UL!) - see also Miller+11 Rather high $<\Re > \sim 86$ (radio-detected) - possible selection bias

Radioloudness (II)

84 RL
15 det. RI
515 1<\mathcal{R}^{u.l.}≤10
12 RQ (det. & undet.)
211 n.c.</pre>

768 ROSAT-det. 4931 ROSAT-undet.

NO statistical difference: KS-probability ~ 0.11

NO clear dichotomy (BUT: high number of UL!) - see also Miller+11 Rather high $<\Re > \sim 86$ (radio-detected) - possible selection bias Evolutionary effects? splite sample in 5 z bins: same distribution- again: UL!

R vs A_{Edd} (I)

- apparent trend of increasing of $\mathcal R$ with $\lambda_{_{Edd}}$
- *P* < 0.1% of correlation due to chance (survival analysis)
- at odds with previous results NOTE the different range covered

Filled circles: BLRGs - Open circles: RL quasars -Open triangles: FRI - Crosses: Seyferts &LINERs.* Filled stars: PG quasars

L. Ballo - X-ray Universe 2011

Sikora+07

*

R vs A_{Edd} (II)

Higher λ_{Edd} for higher \Re :

contribution of nuclear L_x due to jet contamination ? NO: excluding blazar-like sources (most estreme in λ_{Edd} and \Re), correlation still present

*

R vs A_{Edd} (II)

Higher λ_{Edd} for higher \Re :

contribution of nuclear L_x due to jet contamination ? NO: excluding blazar-like sources (most estreme in λ_{Edd} and \Re), correlation still present

overestimated $k_{\chi,bol}$ due to different SEDs in RL & non-RL ? *NO*: L_{bol} from [OIII] vs L_{bol} from X-ray \Rightarrow unlikely different SEDs

R vs SED & L (I)

*

 $L_{2500\text{Å}} \text{ vs } L_{2kev} \& a_{OX}$ $[a_{OX} \equiv \log(F_{2kev}/F_{2500\text{\AA}})/\log(v_{2kev}/v_{2500\text{\AA}})]$

Excluding most extreme sources:

follows the (anti-)correlations – scatter consistent with spread

RL show higher a_{ox} than expected; RI lie around the regression line.

different spectral shape ?

Vignali+03, Strateva+05, Steffen+06, Just+07, Gibson+08

R vs SED & L (II)

*

 $\Re_x \equiv \vee L@5GHz, rf/L(2-10 \text{ keV})$

Terashima&Wilson03

gap at log $\Re_x \sim -3?$ Effects of distribution of undetected sources !

distinction between RL & RI tends to desappear. Dependence of boundaries between RL/RI/RQ with L ?

R vs SED & L (III)

at intermediate *L*, sources follow the Seyfert track; at higher *L*, RL show a sort of "saturation" $L_x \& L_{radio}$ proceed in a linked way; L_{opt} changes independently cf Panessa+07, Terashima&Wilson03

different accretion regime wrt lower *L* sample – see "fundamental plane" (Merloni+03)

X-ray NO jet-dominated; both jet (radio) and X-ray connected to accretion power

SUMMARY

- X-ray vs radio emission in ~ 800 X-ray selected type 1 AGN with 0.3 ≤ z ≤ 2.3 (from 2XMMi & SDSS crosscorrelation + radio information from FIRST)
- * M_{hh} from optical & L_{hol} from X-rays \Rightarrow
- High accretion rate A_{Edd} > 0.01 (possible bias due to X-ray selecion)
- NO anticorrelation R vs λ_{Edd} (possible limited ranage covered)
- * **NO bimodality** in $\Re \Rightarrow$ due to the size and z coverage of the sample more than cosmic evolution
- ★ L_{radio} vs L_x vs L_{opt} ⇒ radio emission linked to the accretion disk regime and not to larger scale phenomena.

(Ballo+, submitted)