Explaining the global X-ray Baldwin effect with XMM-Newton

Thomas Boller Max-Planck-Institut für extraterrestrische Physik Garching Germany

The strong correlation between the intrinsic spectral slope Γ in X-rays and the amount of Compton reflection $\Omega/2\pi$

The $\Omega/2\pi$ - Γ correlation is explained by Comptonization of AGN accretion disc photons

 $\log(hv)$

the larger the solid angle $\Omega/2\pi$ subtended by the reflector and the stronger the luminosity L_{UV} of soft photons is:

- the greater is the cooling by seed photons incident on the plasma
- the lower is the plasma electron temperature $\Theta = kT_e/mc^2$
- \bullet the steeper are the X-ray photon indices Γ
- the weaker is the X-ray luminosity L_X
- \bullet the lower are the α_{ox} values

Accretion states and Comptonizing coronal parameters

XMM-Newton simulations of AGN accretion states and Comptonized plasma parameters

wavelength (A)

LBQS 0102-2713 as an extreme for AGN accretion states and Comptonized plasma parameters

LBQS exhibits one of the steepest soft photon indices

joint fit to the XMM-Newton and ROSAT data

LBQS 0102-2713: XMM-Newton, Swift, ROSAT data

LBQS 0102-2713: Luminosity, Mass and Eddington ratio

LUMINOSITY: L = $(6.2+-0.2) \times 10^{47} \text{ erg s}^{-1}$

the most luminous quasar in the local universe ?

MASS: M = $(2.5^{+4.3}_{-1.6}) \times 10^8 M_{sun}$

EDDINGTON RATIO: $L/L_{edd} = 17.9^{+33.0}_{-11.5}$

one of the highest Eddington ratios measured so far

LBQS 0102-2713: Comparision with mean quasar SED

- steep Γ

The UV line emission is comparable to quasar composits and LBQS is NOT intrinsically X-ray weak

the X-ray weakness is explained by the Comptonization of accretion disc photons

LBQS 0102-2713: Super-Eddington accretion and an extremely cool corona

Super-Eddington accretion produce radiation-driven outflows with significant Thomson depth t >> 1 (e.g. Abramowicz88, Kawashima09), and such outflows Compton up-scatter photons, making the hard emission component

the **steep** soft X-ray photon indices Γ translate in Compton y parameters ranging between y = (0.05 and 0.08)

as y = 4 Θ x τ and assuming a lower limit for τ of 1, the upper limit for Θ = kT_e/mc² ranges between 0.01 and 0.02, corresponding to **low electron temperatures ranging between 5.6 and 10.2 keV**

An qualitative explanation for the global X-ray Baldwin effect

Summary

the larger the solid angle $\Omega/2\pi$ subtended by the reflector and the stronger the luminosity L_{UV} of soft photons is:

- the larger is the radiation-driven outflow (feedback)
- the greater is the cooling by seed photons incident on the plasma
- the lower is the plasma electron temperature $\Theta = kT_e/mc^2$
- the steeper are the X-ray photon indices Γ = ln τ / ln (1 + 4 Θ)
- the weaker is the X-ray luminosity $L_X = f(\Theta, \tau)$
- the lower are the α_{ox} values

which generally explains the global X-ray Baldwin effect