AXIOM: Advanced X-ray Imaging Of the Magnetosphere

G. Branduardi-Raymont UCL Mullard Space Science Laboratory

S. F. Sembay, J. A. Carter, A. M. Read Leicester University

> J. Eastwood Imperial College London

> > D. G. Sibeck NASA GSFC

and the AXIOM collaboration

http://www.mssl.ucl.ac.uk/~gbr/AXIOM/

Branduardi-Raymont et al., in press (2011)

The X-ray Universe, Berlin, 27 – 30 June 2011

The Earth's magnetosphere

- Magnetosphere carved out into the solar wind (SW)
- SW compresses it on one side and stretches it on the other into a long tail
- SW is supersonic, a bow shock forms
- SW is slowed, compressed, heated and diverted into the magnetosheath
- This SW plasma interacts with the magnetopause and penetrates into the magnetosphere

The details of this interaction are not well understood, yet are fundamental to answering ESA's Cosmic Vision question:

'How does the Solar System work?'

A novel approach to imaging

- Solar Wind Charge eXchange (SWCX) role in soft X-ray production in the Earth's exosphere
- SWCX X-rays could then be used to image boundaries of the Earth's dayside magnetosphere
- Other imaging techniques have been employed: Energetic Neutral Atoms (ENA), radio, EUV, but ...
- Only ENA and SWCX X-rays can image boundaries globally
- Only SWCX offers the temporal resolution commensurate to the timescale of the interactions (min to an hour)

A real step change is required:

A wide FOV soft X-ray telescope, for imaging and spectroscopy Located outside the Earth's magnetosphere Coupled with plasma and magnetic field instrumentation

Dennerl 2009

AXIOM science questions

- Magnetopause physics
 - How do upstream conditions control magnetopause <u>location</u>, <u>size</u> and <u>shape</u>, and <u>magnetosheath thickness</u>?
 - Under what conditions do transient boundary layers arise?
- Cusp physics
 - What are the <u>size</u> and <u>shape</u> of the cusps?
 - How do they move in response to SW changes?
- Shock physics
 - What controls where the bow shock forms?
 - How does its thickness depend on the upstream conditions?
- Interaction of a Coronal Mass Ejection with the magnetosphere

Secondary science objectives (comets, SNR)

Russell 2000

AXIOM science requirements

- Magnetopause physics
- Cusp physics
- Shock physics
 - Wide FOV imaging (10 R_E scale) from outside the Earth's magnetosphere

- Spatial resolution 0.1R_E at best, at 1 15 min cadence
- Interaction of a Coronal Mass Ejection with the magnetosphere
 - Spectroscopic X-ray imaging, able to establish SW ion composition
 - Spatial resolution 0.5R_E, at 15 min cadence
- In situ particle and field measurements:
 - 3D distribution (density, velocity, temperature) of H⁺ and He⁺⁺ to resolve SW structure (< 20 keV/q in energy)
 - SW ion distribution on timescale comparable with X-ray imaging
 - Orientation and strength of SW magnetic field

AXIOM mission profile

Wide FOV X-ray imaging and spectroscopy telescope, compact plasma package and magnetometer

- Small size payload, can be accommodated in a Vega launcher
- Vantage point far out from Earth
- Trade-off to establish best option among equatorial and polar orbits
- Baseline: Lissajous orbit around Earth – Moon L1 point (at ~ 50 R_E)

AXIOM payload – WFI

Wide Field Imager (WFI):

- Wide FOV (10° x 15° baseline)
- Energy range 0.1 2.5 keV
- Energy resolution < 65 eV (FWHM) at 0.6 keV</p>
- Angular resolution of ~ 7 arcmin (0.1 R_E at 50 R_E)
- Time resolution of ~ 1 min

WFI predicted effective area

Achievable with MCP optics coupled with X-ray sensitive CCDs at focus

Basic focusing geometry

Frame holding individual MCP plates (Leicester Univ.)

AXIOM WFI viewing geometry

http://www.star.le.ac.uk/~amr30/AXIOM/

One year mission simulation of AXIOM orbit / WFI FOV at 51 $\rm R_{E}$

AXIOM WFI simulated images

AXIOM WFI simulated spectra

Quiescent solar wind

Coronal Mass Ejection

Simulated WFI SWCX spectra (1ks exposure, full FOV)

<u><u><u></u></u></u>

AXIOM plasma package – PAS & ICA

Proton-Alpha Sensor (PAS)

PAS working principle: Top-hat analyser

UCL/MSSL prototype of top-hat analyser

Ion Composition Analyser (ICA)

Electrostatic + time-of -flight analysers: optimised to detect high charge state ions, e.g. C⁶⁺, C⁵⁺, N⁷⁺, N⁶⁺, O⁸⁺, O⁷⁺, Fe¹⁸⁺, Fe¹⁷⁺, Mg¹²⁺, Mg¹¹⁺, etc.

		170	IUA
Energy	Range	0.2 - 20	0.5 – 100 keV/q (AZ)
		keV/q	0.5 – 16 keV/q (EL)
	Resolution (Δ <i>E/E</i>)	7.5%	5.6%
Angle	Range (AZ)	360°	360°
	Range (EL)	± 15°	$\pm 15^{\circ}$
	Resolution	< 2°	< 2°
	(AZ×EL)		
Temporal	Resolution	3 s	5 min

Mounted on a boom to allow full angle viewing

UCL

AXIOM magnetometer – MAG

To establish the orientation and magnitude of the solar wind magnetic field

Baseline: Dual redundant digital fluxgate magnetometer

Required: 0.25 nT accuracy sampling rate up to 32 Hz

Necessary to separate ambient field from magnetic disturbances due to spacecraft:

 \rightarrow Sensors mounted on a boom

→ Spacecraft as magnetically clean as possible

Photograph of a fluxgate sensor (Imperial College London)

AXIOM configuration

<u><u><u></u></u>UCL</u>

Conclusions: AXIOM potential

- AXIOM is a novel, high science and low cost concept mission
- Will provide images and movies of the dynamic SW-magnetosphere interaction exploiting SWCX soft X-ray emission: The Earth's magnetosphere is NOT invisible!
- Potential to revolutionarise magnetospheric physics while tackling ESA's Cosmic Vision question: 'How does the Solar System work?'
- Unlike local measurements, AXIOM views Earth's entire magnetospheric environment, embedded in the SW
- Ultimately will provide a better understanding of energy transfer from SW to this environment
 modelling (and eventually forecasting) of
 space weather
 Space weather

