XMM view of the COSMOS field

The search for obscured AGN in COSMOS and CDFS

Marcella Brusa
MPE - High Energy Group

Results obtained in the framework of the COSMOS & CDFS/MUSIC teams:
Bongiorno, Brunner, Cappelluti, Comastri, Fiore, Fontana, Grazian, Hasinger, Merloni, Salvato, Santini, Zamorani and many others

Wednesday, July 27, 2011
(... definition of “obscured AGN”?)

● Unified vs. co-evolutionary models
 (geometry vs. time)

● Unified models:
 - “viewing angle”
 - AGN emission absorbed by torus (or “clumpy” system)
 BL vs. NL classification
 X-ray obscured vs. X-ray unobscured
 - optical/X-ray classifications agree at 80% level

● Evolutionary models:
 - “phase”
 - AGN emission is obscured by host galaxy dust
 (and, maybe, absorbed by torus)
 - time critical (absorption more common at high-z)

Hopkins et al. 2008

Antonucci 1993
Obscured AGN: why bother?

- to reconcile the local BH mass function with mass accreted on BH

- to reproduce the X-ray background peak

- (at high-z): to test evolutionary models and constrain growth phases
obscured AGN: why bother?

- **Obscured** AGN are needed:
 - to reconcile the local BH mass function with mass accreted on BH (via Soltan argument, e.g. Fabian & Iwasawa 1999, Marconi+2004, Merloni&Heinz 2008, Shankar+2009)

Compton Thick AGN
(IR selection - high z; Swift, Nustar, ASTRO-H...)

Compton thin AGN and QSO
(Chandra & XMM + host galaxies studies)

(see Comastri talk tomorrow morning)
The X-ray selected obscured AGN population
High-luminosity, obscured AGN: XMM-COSMOS

• 1800 pointlike sources down to 1e-15 cgs (Hasinger+07, Cappelluti+07,09)

• 900 (~50%) “secure” spectroscopic redshifts

almost 100% complete including photoz (Salvato+09,11)

combined classification on the basis of X-ray lum and optical spectra
efficiently isolating obscured QSO

Use correlations between observables for the identified samples to isolate obscured AGN in the unidentified one

X/O vs. R-K locus with obscured AGN

16 sources with zspec, 12/16 are Type (80%)

all the ones not identified are candidate obscured AGN

proposed by Fiore, MB+03; see also Brusa et a. 2005, Barger+05, Eckart+06 etc.

24 micron/R-band flux correlates with R-K

(Fiore+2008, 2009 - diagnostics for CT AGN in MIPS selected samples; see also Martinez-Sansigre+2005, Daddi+2007, Donley+2007, Georgakakis+09 etc.)
efficiently isolating obscured QSO

Use correlations between observables for the identified samples to isolate obscured AGN in the unidentified one.

Combining R-K, X/O and MIR/O selection:

~150 candidates obscured QSO at z>1

follow up with **DEIMOS/FMOS/LUCIFER/X-shooter** ongoing or proposed

--> BH mass from Halpha in NIR, looking at these objects in scaling relation and complement the results on type 1 AGN (Merloni et al. 2010, Trump et al. 2010)

X/O vs. R-K locus with obscured AGN

16 sources with zspec, 12/16 (80%)

all the ones not identified are candidate obscured AGN

proposed by Fiore, MB+03; see also Brusa et al. 2005, Barger+05, Eckart+06 etc.
What happens at lower luminosities? (Lx ~10^{42} - 10^{44} erg/s)

Type 2 AGN fraction, strong function of L: less luminous, most obscured

Same results in DIFFERENT bands (Simpson+05, Maiolino+08, Hasinger 2008, Bongiorno+10, Burlon+11, Brightman+11)

Receding torus scenario: most luminous more efficient in cleaning the environment (see also clumpy models, e.g. Nenkova et al. 2008)

Low-L: Relative contribution of AGN and host: “extra” obscuration from host galaxy at low-L (optical and X-ray classification do not agree)
low luminosities obscured AGN: CDFS/MUSIC

Brusa et al. 2009 (CDFS+MUSIC)

1Ms CDFS/MUSIC sample
~110 obscured AGN (BL AGN removed)

Most X-ray selected obscured AGN live in massive galaxies

AGN fraction increases with stellar mass

Trend similar to what observed in the local Universe; higher normalization suggest higher AGN duty cycle?

Blue <43, Red > 43

(see also Yamada+09, Bundy+08, Silverman+08, Bluck+11, Aird talk)
Host of obscured AGN are **RED** and optically luminous

No clear trend with Lx (see also Nandra et al. 2007, Cardamone+2009, Silverman+2009)

relative contribution of host/AGN

50% X-ray selected obscured AGN live in STARFORMING galaxies (>20 Msun/year or $1/SSFR < t(Hubble)$)

works being extended also in XMM-COSMOS sample (Mainieri+11, Lusso+11)

See Mainieri & Lusso talks / Bongiorno poster)
Obscured X-ray selected sources at $z>1$ are red
--> effect of (negative) feedback efficient in stopping star formation, or AGN is in dusty environment?

Evidences for both!

Host galaxies both passive ellipticals or dusty star-forming from morphological analysis and/or SED fitting (see also Mainieri talk yesterday)

--> different phases/timescales are sampled!

Essential role of Herschel in disentangling SB and AGN components (see also Shao et al. 2010, Gruppioni et al. 2011)
The IR selected obscured AGN population
Alternative approach: INFRARED

- AGN (unobs and obs) are expected to have **warm power-law sed** at >1 micron (≠ from elliptical/starburst)
Alternative approach: INFRARED

- AGN (unobs and obs) are expected to have **warm power-law sed** at >1 micron (≠ from elliptical/starburst)

AGN (both type 1 and 2) can be isolated in NIR/MIR diagrams and they are ~ same order of magnitude of X-ray selected obscured AGN

Main issues:

- **reliability** (are only AGN selected?)
- **completeness** (are all AGN selected?)
• Importance of combined X-ray / IR/MIR coverage to isolate obscured accreting black holes

• strong luminosity dependence for the efficiency

Pope et al. (2008) diagram
>50% of obscured AGN lie outside the AGN locus in the starburst region

Stern+2005, Lacy+2005 diagrams:
~50% of obscured AGN lie outside the AGN wedges (~20% of the most luminous..)
Reliability issues (2)

Increasing IRAC flux -->

Lacy et al. wedge fraction of X-ray detected sources increases with IRAC flux

Average (stacked) HR in X-ray undetected population

is higher than

average (measured) for X-ray detected sources

Donley, MB et al. subm
Summary & Future

X-ray selected luminous, obscured AGN are can be efficiently isolated in X-ray surveys from multiwavelength diagnostics (3 bands!)

Host galaxies of z>1 obscured AGN show both high, dust obscured starforming galaxies and passive ellipticals (different phases, during and right after major accretion?)

IR criteria suffer from severe contamination as you approach faint fluxes / completeness is also an issue

What’s next?

“complete” AGN luminosity function (joining IR + Xray samples)

Complete census of accretion (BH mass and Mdot) and star formation (Mstar and SFR) needed to get the full picture

→ A truly multiwavelength approach and a better statistics is mandatory (Herschel, ALMA, WFC3, IR spectrographs …)

Obscured, Luminous sources in the “transition” phase are rare --> large are and bright X-ray surveys (prospects for eROSITA!)
Thanks!

related poster/talks (among others):

J. Aird (talk 27.6) --> Stellar masses of AGN host galaxies
V. Mainieri (talk 27.6) --> Host galaxies properties of QSO2 in COSMOS
A. Comastri (invited 29.6) --> obscured AGN in X-ray surveys
D. Burlon (talk 30.6) --> Type 2 AGN fraction in Swift/BAT samples
E. Lusso (talk 30.6) --> Type 2 AGN SED and bolometric corrections

I. Balestra (poster # G01) --> SED of obscured AGN in CDFS
A. Bongiorno (poster # G02) --> SED fitting decomposition and AGN hosts mass function
E. Rovilos (poster #G40) --> Star formation properties of osbcured AGN

other COSMOS talks/posters:

V. Allevato (talk 30.6) --> Bias evolution and clustering prperties in XMM-COSMOS
F. Civano (poster #G07) --> High redshift (z>3) AGN in C-COSMOS
M. Salvato (poster #G41) --> Photometric redshifts for Chandra & XMM COSMOS AGN