Exploring (extremely) obscured accretion

Francisco J. Carrera (IFCA, CSIC-UC, Spain)

S. Mateos (IFCA, CSIC-UC, Spain), R. Della Ceca, A. Caccianiga, A. Corral, P. Severgnini (OAB-INAF, Italy), A. del Moro (U. Durham, UK)

X-ray Universe, Berlin, 30-June- 2011

Outline

- Obscured accretion and high F_X/F_{Opt}
- Our parent samples
- Our selection of high F_X/F_{Opt} sources
- Our subsamples
- X-ray spectral properties
- Highlights:
 - High Eddington ratios (inc. Xabs BLAGN !?: NLSy1)
 - Transition object...
- Summary

Obscured accretion and high F_x/F_{Opt}

- Most accretion in the Universe is thought to occur in obscured AGN
 - But perhaps not so much in CT (Gilli+07)
- Several methods to select obscured AGN:
 - [OIII],[NeV]...
 - MIR colours
 - ...
- Our method: high X-ray flux to optical flux ratio
 - based on much higher obscuration in rest-frame optical-UV with respecto to X-ray

F_X/F_{Opt} ratio: XMS (Barcons+07)

Our parent samples

- Aim was to assemble a large number of identifications of sources with large F_X/F_{Opt} ratio:
 - Objects rare → need large sky areas
 - Looking for properties \rightarrow high fluxes
- Parent samples:
 - XBS (DellaCeca+04, Caccianiga+07): serendipitous XMM sources at bright fluxes
 - del Moro+09,(+11 in preparation): objects with extreme F_X/F_{Opt} in 2XMMp vs. SDSS DR5
 - Della Ceca+11 (in preparation): objects with extreme F_X/F_{Opt} in 2XMMiDR2 vs. SDSS
 - BUXS (Mateos+11 in preparation): 5-10keV survey from 2XMMi-DR3

Our selection of high F_X/F_{Opt} sources

• 41 initial sources: $F_X >= 10^{-13}$ cgs log(F_X/F_{Opt})>=1.2 (r'/R~21-25)

Identifications

- Used GTC/OSIRIS (18), VLT/FORS2 (1), Subaru/MOIRCS (3)
- Identified 22+3: 10BLAGN, 11NELG, 1Gal, 3BLLacs

Our subsamples of high F_X/F_{Opt}

• 41 initial sources: $F_X >= 10^{-13}$ cgs log(F_X/F_{Opt})>=1.2:

Our subsamples of high F_X/F_{Opt}

• 41 initial sources: $F_X >= 10^{-13}$ cgs log(F_X/F_{Opt})>=1.2

X-ray spectral properties

- Fitted powerlaw and intrinsically absorbed powerlaw to 22 sources, signif. from F-test (all log(L_{X,2-10keV})>~44):
 - No signif. abs. 8 sources: 4BLAGN ($2N_H < <$), 1NELG, 1Gal, 2BLLac
 - Signif. abs.: 14 sources: 3BLAGN, 10NELGs, 1BLLac
 - 3 sources log(N_H)<=22 95% signif.: 2BLAGN, 1BLLac

X-ray spectral properties

- "Complete" sample: 15 sources (2 more no X-ray spec.):
 - No signif. abs. 8 sources
 - Signif. abs.: 7 sources: 1BLAGN, 5NELGs, 1BLLac
 - 1 sources log(N_H)<=22 95% signif.: 1BLLac

X-ray spectral properties

- Statistically complete sample: 7 sources:
 - No signif. abs. 1 source: 1BLLac
 - Signif. abs.: 6 sources: 1BLAGN, 4NELGs, 1BLLac
 - 1 sources log(N_H)<=22 95% signif.: 1BLLac
 - Only 1 source Γ<1.4 (95% signif.): XMM J1232+2152 (delMoro+09, z=1.87 -0.76?-)

- From Opt. spec.:
 - $-\log(M_{BH}/M_{sun})=7.5$
 - $-\log(L_{Edd}/cgs)=45.6$
- From X-ray spec.:
 - $\log(L_{X,2-10keV}/cgs) = 46.0$
 - No signif. neutral of ion. abs.
- Edd. ratio~100 (κ = 35)

- From Opt. and X-ray spec.:
 - Edd. ratio~0.05 (κ =35)
- Out of 200BLAGN in XBS:
 - only 2 EW~50-60Å, most <10-20Å
 - int. abs. opt. @[OII]~1/3
- In Sy2 EW~200Å:

 \Rightarrow transition object?

Summary

- Looking for obscured AGN at high FX/FOpt values
 - Good quality X-ray spectra \rightarrow high FX values \rightarrow rare objects
 - Merging of objects from several large samples (XBS, BUXS...)
- Using OSIRIS on GTC (and others)
- Identified 22+3 sources (10 BLAGN, 11 NELG, 1 Gal, 3 BLLacs?):
 - All $F_X > 1.5 \times 10^{-13}$ cgs log(F_X/F_{Opt})>=1.2: 17 (6 BLAGN, 7 NELG, 1 Gal, 3 BLLacs)
 - Statistically complete sample: 7 (1 BLAGN, 4 NELGs, 2 BLLac)
- XMM-Newton X-ray spectra of 22 sources:
 - 14 significant absorption, 11 log(NH)>22 (95% signif.):
 - 1 BLAGN: J12+39 z=2.694 NLSy1
 - 10 NELGs: all QSO2s
 - including J1232+2152 (delMoro+09)
 - no evidence for Compton Thick absorption
 - Statistically complete sample:
 - 2 BLLacs no signif. abs. or log(N_H)<22 (95% signif.)
 - signif. abs.: 1 BLAGN (J12+39), 4 NELGs (all QSO2s)
 - Many BLAGN:
 - Two highest L_x BLAGN super-Eddington, next one down transition?...
 - \Rightarrow Good method to select QSO2s but not CT