X-ray observations of PKS 0745-191 at the virial radius:

Are we there yet?

Dominique Eckert

Silvano Molendi, Fabio Gastaldello, Mariachiara Rossetti INAF/IASF Milano, Italy

D. Eckert et al. 2011, A&A 529, 133

Dominique Eckert

Why study cluster outskirts?

- Where the current activity of structure formation takes place
- Study the transition between virialized and infalling material
- Calibrate X-ray mass measurements

Vazza et al. 2011

Dominique Eckert

Suzaku results on PKS 0745-191

- PKS 0745-191 (z=0.1028) is a massive cool-core cluster located at low Galactic latitude (b=3°)
- Observed by Suzaku, 5 pointings of 30 ks
- Results presented in George et al. 09 (G09)
- ICM convectively unstable in cluster outskirts?
- Needs confirmation
 from another instrument

Dominique Eckert

ROSAT/PSPC observation

- Advantages of the PSPC:
 - Large FOV (25 times Suzaku)
 - Very low instrumental background
 - Good PSF (~25" on-axis, 4 times better than Suzaku)
 - ... But limited spectral capabilities

 PKS 0745-191 was observed by the PSPC for a total of 11 ksec

Dominique Eckert

Data analysis

- We used the ROSAT ESAS software (Snowden et al. 1994)
- Various background components:
 - Particle background
 Scattered solar X-rays
 - Sky background
- We used the source-free region (r>25') to measure the cosmic background

Results

- No significant cluster emission is detected beyond r=17': n_{17-25'}< 4.2x10⁻⁵ cm⁻³ (90%)
- We folded the Suzaku data with the PSPC response and compared with our results
- ROSAT and Suzaku inconsistent at 7.7σ

Sky background

- G09 used the Lockman hole as bkg for the observation
- There is foreground emission in the mid-plane (e.g., McCammon 90)
 - Masui et al. 09: presence of hot components (0.5-1.5 keV)
 - "This strong feature makes the b=0 spectrum qualitatively unlike emptyfield spectra at other latitudes."

Dominique Eckert

Temperature profile

- G09 found a very steep temperature gradient (PL slope -0.94)
- Tension with other results (XMM, Swift, SAX) beyond
 r=6'
- Leads to an indetermination of 25% in r₂₀₀ and a factor of 2 in M₂₀₀

Summary

- ROSAT/PSPC has clear advantages with respect to Suzaku in low-SB regions (large FOV, better PSF)
- The PSPC SB profile is inconsistent with Suzaku at 7.7σ beyond r=13.5'
 - Result explained by an improper modeling of the galactic foreground emission at low galactic latitude
- The improper background modeling biases the measured temperatures low, inconsistent with 3 other satellites

We are not there yet

Dominique Eckert

Cluster sample

- We analyzed a sample of 31 clusters observed with ROSAT/PSPC in the redshift range 0.04-0.2
 - Aim: compute mean density and EM profiles, constrain azimuthal variations
- We computed r₂₀₀ from scaling relations and performed selfsimilar scaling (Arnaud et al. 02)

Dominique Eckert

Mean emission measure profiles

- Stacked EM profiles for the total sample, and for NCC and CC classes
- Mean profiles steepen beyond 0.7r₂₀₀ ~ r₅₀₀
 Agreement with previous ROSAT results (Vikhlinin et al. 99, Neumann 05)

 NCC profiles exceed CC beyond ~0.3r₂₀₀

Average density profile

- We computed the average deprojected density profile
- Scatter 10-20% in density in 0.3-0.7r₂₀₀, good agreement with previous results (e.g. Croston et al. 08)

Average density profile

- We computed the average deprojected density profile
- Scatter 10-20% in density in 0.3-0.7r₂₀₀, good
 agreement with previous results (e.g. Croston et al. 08)

 G09 density profile strongly deviant from the mean

Dominique Eckert

Azimuthal scatter

 Azimuthal scatter in 12 sectors using the definition of Vazza et al. 2011:

 $\sigma^{2} = \sum_{i=1}^{12} \frac{(S_{i} - \langle S \rangle)^{2}}{\langle S \rangle^{2}}$

- The profiles were stacked to obtain a mean scatter profile
- Around r₂₀₀ even CC clusters are strongly asymmetric

The X-ray Universe 2011

Dominique Eckert

Summary

- In average, density profiles steepen beyond r₅₀₀
- Profiles are highly self-similar outside the core, but we observe in average steeper profiles for CC than for NCC clusters
 - Even clusters which exhibit relaxed morphologies inside r₅₀₀ are highly asymmetric around r₂₀₀

 \rightarrow A sufficient azimuthal coverage is necessary to study the behavior of the gas around r₂₀₀

Backup slides

Dominique Eckert

PKS azimuthal variations

 Surface brightness profile in exactly the same regions as G09

ROSAT still inconsistent with Suzaku at 5.2σ

Dominique Eckert

Systematic uncertainties in bkg

- We extracted SB profiles for 4 different blank fields
- Profiles from the center of the FOV fitted with a constant
- Systematic error ~6% of the CXB, including cosmic variance

Dominique Eckert

Gas mass

- Enclosed gas mass profiles for CC and NCC
- Once the appropriate scaling is applied, the profiles converge to the same gas mass within r₂₀₀
- The same gas mass is distributed in a different way in CC and NCC

Dominique Eckert

Statistical scatter

 The total scatter computed using the formula of Vazza et al. is the sum of statistical and intrinsic scatter:

$$\sigma^2 = \sigma_{stat}^2 + \sigma_{intr}^2$$

• The statistical scatter is given by the mean error in each bin: $\sigma_{stat}^{2} = \frac{1}{N} \sum_{i=1}^{12} \frac{\sigma_{i}^{2}}{\sqrt{S}}$

- It is then subtracted from the total scatter to estimate the intrinsic scatter
- Errors from MC simulations