Testing the Low-Mass End of X-Ray Scaling Relations with Galaxy Groups

Helen Eckmiller

Daniel Hudson Thomas Reiprich

The X-ray Universe 2011

Berlin, 29 June 2011

Motivation

- Galaxy clusters are important cosmological tools
- Scaling relations necessary for large samples
- Groups are expected to be more strongly influenced by non-gravitational effects
- Relations need to be tested for the low-mass range

Groups vs. Clusters

	Groups	Clusters
Member count	< 50	50 - 10,000
Temperature	$\approx 1 \text{ keV}$	3 – 10 keV
Extent	0.1 – 1 Mpc	several Mpc
Luminosity L_x	$10^{42} - 10^{43} \mathrm{erg} \mathrm{s}^{-1}$	$10^{43} - 10^{45} \mathrm{erg} \mathrm{s}^{-1}$
Mass	$10^{13}M_\odot$	$10^{14} - 10^{15} M_{\odot}$
Mass Fraction (Galaxies)	up to 20 %	< 5 %

In groups the mass of the galaxies is comparable to the ICM

Context

Some evidence for a systematic "break"

(e.g. Xue & Wu 2000, Helsdon & Ponman 2000, Finoguenov et al. 2001, Sanderson et al. 2003, Gastaldello et al. 2007, Davé et al. 2008)

 Some investigations show group relations consistent with clusters, but larger scatter

(e.g. Mulchaey & Zabludoff 1998, Osmond & Ponman 2004, Sun et al. 2009)

Sample Selection

- statist. complete parent samples
- L_x < 2.55·10⁴³ erg/s
- z > 0.01
- 26 groups with Chandra data

- Annular regions with same number of source counts
- CXB modeled with blank-sky background files

Radial Profiles

Luminosity-Temperature Relation

HIFLUGCS: Reiprich & Böhringer (2002), Mittal et al. (2009), Hudson et al. (2010)

L-T with Temperature Cut

Mass-Temperature Relation

Luminosity-Mass Relation

LoCuSS: Zhang et al. (2008)

Gas Mass and Gas Fraction

• : Sun et al. 2009 ---- : Cosmic f_g from WMAP5 (Dunkley et al. 2009)

r₅₀₀vs. r₂₅₀₀

14

Summary

- Study of scaling relations for group sample
- Universal shape of T profiles for r > 0.05 r₅₀₀
- L_x-T cut at 3 keV steepens for groups
- Overall: Larger scatter, but similar slope
- Lower f_g in groups
- Paper submitted to A&A