

Presented by Elise Egron Università di Cagliari

Detection of a relativistic iron line in MXB 1728-34 with XMM-Newton

The X-ray Universe 2011 Berlin, June 28th

The Iron Line

- **Broad iron line in the energy range 6.4 7.0 keV**
- Could be produced from irradiation by hard X-rays of the cold matter (accretion disk)

=> reflection component

Identified with Kalpha transition of iron at different ionization states

Profile of the line

Broad and Asymmetric :

Doppler shifts
Relativistic beaming
Gravitational redshifting

Useful informations

***** Determination of parameters of the accretion disk :

- Inner radius
- Outer radius
- Inclination of the system \longrightarrow
- Ionization parameter : $\xi(r) = 4\pi F_{\rm X}(r)/n(r)$

MXB 1728-34

- * LMXB containing a weakly magnetized neutron star
- * Atoll class

MXB 1728-34

- * LMXB containing a weakly magnetized neutron star
- * Atoll class
- Optical counterpart unknown
- Frequent type I X-ray bursts
 => constrain the distance to the source (4.1 < d < 5.1 kpc)

Observation & Spectral Analysis

- Observed by XMM-Newton on 2002 October 3rd
- Observing time of 28 ks
- * EPIC-pn, MOS1, MOS2, RGS1, RGS2
- OM not active

XMM-Newton/EPIC-pn data published by Ng et al. (2010)

RXTE/ASM lightcurve :

- ✤ 1.5-12 keV energy range
- Average count rate :3 counts/s

=> Not activity period during the XMM-Newton observation

Data reduction with SAS

- **EPIC-pn and MOS => Timing Mode**
- No contamination from the background solar flares => lightcurve in 10-12 keV
- Pile-up did not affect the data count rate : 110 counts/s << 800 counts/s</p>
- RGS => Standard spectroscopy mode

Detection of the iron line

	Gaussian	Diskline	Relline	Reflionx
E line (keV) Rin (Rg) Inclination	6.57 ± 0.05 - -	$6.45 \begin{array}{c} +0.05 \\ -0.07 \\ 18 \begin{array}{c} +3 \\ -6 \\ (60^{\circ}) \end{array}$	$\begin{array}{c} 6.43 \pm 0.07 \\ 19 \overset{+3}{_{-4}} \\ (60^{\circ}) \end{array}$	- 20 ⁺²⁹ -6 > 44°
Chi2 (d.o.f.)	1489 (901)	1463 (899)	1464 (899)	1555 (901)

	Gaussian	Diskline	Relline	Reflionx
E line (keV) Rin (Rg) Inclination	6.57±0.05 - -	$6.45 \stackrel{+0.05}{_{-0.07}}$ $18 \stackrel{+3}{_{-6}}$ (60°)	$\begin{array}{c} 6.43 \substack{+0.07 \\ 19 \substack{+3 \\ -4 \\ (60^{\circ})} \end{array}$	- 20 ⁺²⁹ > 44°
Chi2 (d.o.f.)	1489 (901)	1463 (899)	1464 (899)	1555 (901)

200 simulations : probability of chance improvement = 1%

=> The diskline model is preferred

	Gaussian	Diskline	Relline	Reflionx
E line (keV) Rin (Rg) Inclination	6.57±0.05 - -	$6.45 \stackrel{+0.05}{_{-0.07}}$ $18 \stackrel{+3}{_{-6}}$ (60°)	6.43±0.07 19 ⁺³ (60°)	- 20 ⁺²⁹ -6 > 44°
Chi2 (d.o.f.)	1489 (901)	1463 (899)	1464 (899)	1555 (901)

in agreement

	Gaussian	Diskline	Relline	Reflionx
E line (keV) Rin (Rg) Inclination	6.57±0.05 - -	$6.45 \begin{array}{c} +0.05 \\ -0.07 \\ 18 \begin{array}{c} +3 \\ -6 \\ (60^{\circ}) \end{array}$	$\begin{array}{c} 6.43 \pm 0.07 \\ 19 \overset{+3}{_{-4}} \\ (60^{\circ}) \end{array}$	- 20 ⁺²⁹ -6 >44°
Chi2 (d.o.f.)	1489 (901)	1463 (899)	1464 (899)	1555 (901)

Addition relativistic smearing : Chi2 (d.o.f.) = 1463 (900)

=> Relativistic smearing required

Conclusion

- We presented a different approach of Ng et al. (2010) to the data analysis.
 - \Rightarrow 5 instruments
 - => different continuum
 - => different models (favor in a broad and relativistic line)
- First time XMM data from MXB 1728-34 fitted with a self-consistent reflection model.
- Diskline model preferred to Gaussian
- **Relativistic smearing required in the reflection model**

=> The iron line is relativistic

