Ultra Hard X-ray Luminosity Function of AGN

Sotiria Fotopoulou

sotiria.fotopoulou@ipp.mpg.de

IMPRS - Max Planck Institut für Plasma Physik Technical Universität München

I. Georgantopoulos (INAF, NOA), G. Hasinger (UOH, IPP), M. Salvato (IPP), M. Brusa (MPE), A. Akylas (NOA), A. Georgakakis (NOA)

Active Galactic Nuclei

- powered by accretion onto super-massive black hole,
- growth of black hole,
- extreme X-ray radiation from the nucleus
- selection criterion: $L_x > 10^{42} erg/sec$

Active Galactic Nuclei

- powered by accretion onto super-massive black hole,
- growth of black hole,
- extreme X-ray radiation from the nucleus
- selection criterion: $L_x > 10^{42} erg/sec$

Interplay between host galaxy and AGN, co-evolution? feedback?

Active Galactic Nuclei

- powered by accretion onto super-massive black hole,
- growth of black hole,
- extreme X-ray radiation from the nucleus
- selection criterion: $L_x > 10^{42} erg/sec$

Interplay between host galaxy and AGN, co-evolution? feedback?

How do AGN evolve with redshift?

How do AGN evolve?

The luminosity function is the number of AGN per unit comoving volume, per unit luminosity:

$$\frac{d\Phi(L_x,z)}{dLogL_x} = \frac{dN(L_x,z)}{dV_c \ dLogL_x}$$

The comoving volume is the volume traced by coordinates fixed on the Hubble flow:

$$dV_c = D_H \frac{(1+z)^2 D_A^2}{E(z)} d\Omega dz$$

Computing the LF

Non-parameteric

1/V_{max} - binned
 (Page & Carrera 2000)

For each (L_x-z) bin:

$$\phi(L_x, z) = \frac{\text{sources}}{\int \int \frac{dV_c}{dz} dLogL_x dz}$$

Parametric - not binned

 Maximum Likelihood (Marshall et al., 1985)
 Assume a functional form Find the best parameters, minimizing:

$$L = -2 \sum ln \frac{N(LogL_{x,i}, z_i)}{\int \int N(LogL_x, z) dLogL_x dz}$$

where
$$N(LogL_x, z) = \frac{d\Phi^{model}}{dLogL_x} \frac{dV_c}{dz}$$

Previous works

	energy range (keV)	best model	no. param.
Miyaji et al. (2000)	0.5 - 2.0	LDDE1 LDDE2	8 9
Ueda et al. (2003)	2.0 - 10.0	LDDE	8 (U03)
Hasinger et al. (2005)	0.5 - 2.0	LDDE	10
La Franca et al. (2005)	2.0 - 10.0	LDDE	U03
Silverman et al. (2008)	2.0 - 8.0	LDDE	U03
Ebrero et al.	0.5 - 2.0	LDDE	U03
(2009)	2.0 - 10.0	LDDE	U03
	4.5 - 7.5	LDDE	U03
Yencho et al. (2009)	2.0 - 8.0	ILDE, LDDE	5, U03
Aird et al. (2011)	2.0 - 10.0	LADE	7

Previous works

	energy range (keV)	best model	no. param.
Miyaji et al. (2000)	0.5 - 2.0	LDDE1 LDDE2	8 9
Ueda et al. (2003)	2.0 - 10.0	LDDE	8 (U03)
Hasinger et al. (2005)	0.5 - 2.0	LDDE	10
La Franca et al. (2005)	2.0 - 10.0	LDDE	U03
Silverman et al. (2008)	2.0 - 8.0	LDDE	U03
Ebrero et al.	0.5 - 2.0	LDDE	U03
(2009)	2.0 - 10.0	LDDE	U03
	4.5 - 7.5	LDDE	U03
Yencho et al. (2009)	2.0 - 8.0	ILDE, LDDE	5, U03
Aird et al. (2011)	2.0 - 10.0	LADE	7

Question 1: What happens at low luminosities?

Previous works

	energy range (keV)	best model	no. param.
Miyaji et al. (2000)	0.5 - 2.0	LDDE1 LDDE2	8 9
Ueda et al. (2003)	2.0 - 10.0	LDDE	8 (U03)
Hasinger et al. (2005)	0.5 - 2.0	LDDE	10
La Franca et al. (2005)	2.0 - 10.0	LDDE	U03
Silverman et al. (2008)	2.0 - 8.0	LDDE	U03
Ebrero et al.	0.5 - 2.0	LDDE	U03
(2009)	2.0 - 10.0	LDDE	U03
	4.5 - 7.5	LDDE	U03
Yencho et al. (2009)	2.0 - 8.0	ILDE, LDDE	5, U03
Aird et al. (2011)	2.0 - 10.0	LADE	7

Question 1: What happens at low luminosities? **Question 2:** What happens at high redshift?

Ultra Hard X-ray (5-10keV) – motivation

- Little absorption, even for edge-on torus, z=0 $NH \sim 10^{23} cm^{-2}$
 - $5-10\,\mathrm{keV}\sim$ 20% flux lost
 - $2-10\,\mathrm{keV}\sim$ 50% flux lost
- Compton thick objects

Ultra Hard X-ray (5-10keV) – dataset

• Only XMM fields used:

• Hard Bright Sample $\sim 25\,{\rm deg}^2$ ${\rm F}_{\rm x,lim}=7\cdot 10^{-14}\,{\rm erg/s/cm^2}$

(Della Ceca et al. 2004, Caccianiga et al. 2008)

 $\label{eq:states} \begin{array}{l} \bullet \mbox{ XMM-Cosmos} \sim 2 \mbox{ deg}^2 \\ F_{x,lim} = 1.3 \cdot 10^{-14} \mbox{ erg/s/cm}^2 \\ \mbox{ (Cappelluti et al. 2009, Brusa et al 2010,} \end{array}$

Salvato et al. 09)

- Lockman Hole $\sim 0.2 \text{ deg}^2$ $F_{x,lim} = 1.8 \cdot 10^{-15} \text{ erg/s/cm}^2$ (Brunner et al. 2008, Rovilos et al. 2011, Fotopoulou et al. 2011)
- Good coverage of the L_x -z plane, ~400 sources
- 98% redshift complete

Ultra Hard X-ray (5-10keV) – dataset

- Redshift information:
 - Hard Bright Sample 63 spec-z
 - XMM-Cosmos
 - 191 spec-z, 55 phot-z
 - Lockman Hole
 52 spec-z, 42 phot-z
- photoz tuned for AGN:
 - XMM and *Chandra*-COSMOS: Salvato et al., 2009, 2011 (G41)
 - Lockman Hole: Fotopoulou et al., 2011

- 1/*V_{max}* method- Non parametric
- No function assumed
- Broken power law at low z
- Complicated evolution with z

Ultra Hard X-ray (5-10keV) – Model crash test

Akaike Information Criterion (AIC),

$$AIC = -2In(L) + 2k$$

Minimum value preferred, also models with

$$AIC_{model} - AIC_{min} < 2$$

should be considered.

	model	no. parameters (k)	AIC
Miyaji et al. 2000	LDDE1	8	1077.778
Ueda et al. 2003	LDDE	8	1065.226
Yencho et al. 2009	ILDE	5	1119.019
Aird et al. 2011	LADE	7	1071.291

Ultra Hard X-ray (5-10keV) – Model crash test

Akaike Information Criterion (AIC),

$$AIC = -2In(L) + 2k$$

Minimum value preferred, also models with

$$AIC_{model} - AIC_{min} < 2$$

should be considered.

	model	no. parameters (k)	AIC
Miyaji et al. 2000	LDDE1	8	1077.778
Ueda et al. 2003	LDDE	8	1065.226
Yencho et al. 2009	ILDE	5	1119.019
Aird et al. 2011	LADE	7	1071.291

- filled symbols: $1/V_{max}$ estimates, no. sources ≥ 5
- \circ open symbols: $1/V_{max}$ estimates, no. sources < 5
- - gray dashed curve: extrapolated fit at redshift z = 0
- solid black line: fitted LDDE model at median z of the redshift bin

- filled symbols: $1/V_{max}$ estimates, no. sources ≥ 5
- \circ open symbols: $1/V_{max}$ estimates, no. sources < 5
- - gray dashed curve: extrapolated fit at redshift z = 0
- solid black line: fitted LDDE model at median z of the redshift bin

- filled symbols: $1/V_{max}$ estimates, no. sources \geq 5
- \circ open symbols: $1/V_{max}$ estimates, no. sources < 5
- - gray dashed curve: extrapolated fit at redshift z = 0
- solid black line: fitted LDDE model at median z of the redshift bin

- filled symbols: $1/V_{max}$ estimates, no. sources ≥ 5
- \circ open symbols: $1/V_{max}$ estimates, no. sources < 5
- - gray dashed curve: extrapolated fit at redshift z = 0
- solid black line: fitted LDDE model at median z of the redshift bin

- filled symbols: $1/V_{max}$ estimates, no. sources ≥ 5
- \circ open symbols: $1/V_{max}$ estimates, no. sources < 5
- - gray dashed curve: extrapolated fit at redshift z = 0
- solid black line: fitted LDDE model at median z of the redshift bin

Comparison with previous works

Comparison with previous works

- Some agreement with previous LFs.
- Question 1: What happens at low luminosities?
- Question 2: What happens at high redshift?
- High redshift and low luminosity are still unclear.
- filled symbols: $1/V_{max}$ estimates, no. sources ≥ 5
- \circ open symbols: $1/V_{max}$ estimates, no. sources < 5
- - dashed curves: Ueda et al., 2003 results
- ... dotted curves: Ebrero et al., 2009 results
- solid curves: this work

Comparison with previous works

- Some agreement with previous LFs.
- **Question 1:** What happens at low luminosities?
- Question 2: What happens at high redshift?
- High redshift and low luminosity are still unclear.
- filled symbols: $1/V_{max}$ estimates, no. sources ≥ 5 o open symbols: $1/V_{max}$ estimates, no. sources < 5- dashed curves: Ueda et al., 2003 results ... dotted curves: Ebrero et al., 2009 results — solid curves: this work magenta points: $1/V_{max}$ estimates $L_x > 10^{44} erg/sec$, Civano et al., 2011 (607)

Can we use the 5 - 10 keV band to study LFs?

Can we use the 5 - 10 keV band to study LFs? Yes we can! • Little absorption.

- Little absorption.
- Large sample \sim 400 sources.

- Little absorption.
- Large sample \sim 400 sources.
- > 98 % redshift complete (76% spec-z, 24% photo-z).

- Little absorption.
- Large sample \sim 400 sources.
- > 98 % redshift complete (76% spec-z, 24% photo-z).
- Highly accurate photometric redshifts.

Can we use the 5 - 10 keV band to study LFs? Yes we can!

- Little absorption.
- Large sample \sim 400 sources.
- $\bullet~>98$ % redshift complete (76% spec-z, 24% photo-z).
- Highly accurate photometric redshifts.

What have we learned from XMM @ 5 - 10keV?

Can we use the 5 - 10 keV band to study LFs? Yes we can!

- Little absorption.
- Large sample \sim 400 sources.
- > 98 % redshift complete (76% spec-z, 24% photo-z).
- Highly accurate photometric redshifts.

What have we learned from XMM @ 5 - 10keV?

• Luminosity Dependent Density Evolution.

Can we use the 5 - 10 keV band to study LFs? Yes we can!

- Little absorption.
- Large sample \sim 400 sources.
- > 98 % redshift complete (76% spec-z, 24% photo-z).
- Highly accurate photometric redshifts.

What have we learned from XMM @ 5 - 10keV?

- Luminosity Dependent Density Evolution.
- Stronger evolution with redshift than lower X-ray bands.

Can we use the 5 - 10 keV band to study LFs? Yes we can!

- Little absorption.
- Large sample \sim 400 sources.
- > 98 % redshift complete (76% spec-z, 24% photo-z).
- Highly accurate photometric redshifts.

What have we learned from XMM @ 5 - 10keV?

- Luminosity Dependent Density Evolution.
- Stronger evolution with redshift than lower X-ray bands.
- Number density decreases at high redshift(?)

Future work also includes,

Future work also includes,

• Bayesian approach for truncated data (Kelly et al., 2008).

Future work also includes,

- Bayesian approach for truncated data (Kelly et al., 2008).
- Elaborate method to account for errors in photo-z estimates.

Future work also includes,

- Bayesian approach for truncated data (Kelly et al., 2008).
- Elaborate method to account for errors in photo-z estimates.

What else is there to explore?

Future work also includes,

- Bayesian approach for truncated data (Kelly et al., 2008).
- Elaborate method to account for errors in photo-z estimates.

What else is there to explore?

• Soft X-ray Band: up to 80-90% of the Cosmic X-ray Background has been resolved to discrete sources (Miyaji et al., 2000).

Future work also includes,

- Bayesian approach for truncated data (Kelly et al., 2008).
- Elaborate method to account for errors in photo-z estimates.

What else is there to explore?

- Soft X-ray Band: up to 80-90% of the Cosmic X-ray Background has been resolved to discrete sources (Miyaji et al., 2000).
- Ultra Hard X-ray Band: only 50-70% has been resolved (Worsley et al., 2004).

Thank you!

XMM - Chandra cross calibration

• Lumb et al. 2001,

"We find a slight evidence that the XMM-determined fluxes are in excess of the CHANDRA estimated fluxes by about 10 (20)% in the soft (hard) band."

Tsujimoto et al. 2011,

"We identify systematic differences in the best-fit parameter values unattributable to statistical scatter of the data alone." (20% for 1-8keV for XMM and Chandra)

Moretti et al. 2003,

"[...] we artificially increased and reduced the flux of each survey (one by one) by a 10% factor (modifying the corresponding sky coverage). We found that we have typical differences of 2% of the total CXB (and never larger than 3%)."

XMM - Chandra cross calibration

Luminosity Function

$$rac{d\Phi(LogL_x,z)}{dLogL_x} = A \cdot [(rac{L_x}{L_*})^{\gamma_1} + (rac{L_x}{L_*})]^{-1} \cdot evolution$$

 $d\Phi(l = 1 =)$

Pure Luminosity Evolution:

$$\frac{d\Phi(LogL_x,z)}{dLogL_x} = \frac{d\Phi(LogL_x)\Phi(z),z=0)}{dLogL_x}$$
$$\frac{d\Phi(LogL_x,z)}{dLogL_x} = \frac{d\Phi(LogL_x,z=0)}{dLogL_x} \cdot \mathbf{e}(z)$$

 $d\Phi(1 + 1) / (-) = 0$

$$e(z) = \begin{cases} (1+z)^{p_1} & z <= z_c \\ e(z_c) \cdot (\frac{1+z}{1+z_c})^{p_2} & z > z_c \end{cases}$$

Luminosity Depended Density Evolution: $\frac{d\Phi(LogL_x,z)}{dLogL_x} = \frac{d\Phi(LogL_x,z=0)}{dLogL_x} \cdot \mathbf{e}(z,L_x)$

$$e(z, L_x) = \begin{cases} (1+z)^{p_1} & z \leq z_c(L_x), \\ e(z_c) \cdot (\frac{1+z}{1+z_c(L_x)})^{p_2} & z > z_c(L_x) \end{cases} \quad z_c(L_x) = \begin{cases} z_c^* & L_x \geq L_a, \\ z_c^* \cdot (\frac{L_x}{L_a})^a & L_x < L_a \end{cases}$$

Likelihood minimization determines: L_* , γ_1 , γ_2 , z_c , L_a , p_1 , p_2 , a