Spotting the misaligned outflows in NGC 1068 using X-ray polarimetry

René W. Goosmann

Observatoire astronomique de Strasbourg, France

in collaboration with Giorgio Matt, Frédéric Marin, and Martin Gaskell

International conference *The X-ray Universe 2011* Berlin, Germany, June 29th 2011

Linear polarization of light

The polarization state of an electromagnetic wave denotes the direction of the electric field vector (classical picture)

Observing multi-wavelength polarization

X-ray polarimetry relies on tracing ejected photoionization and Auger electrons

In the optical/UV, birefringent beamsplitters are used to separate the ordinary from the extra-ordinary beam

Scattering-induced polarization

- Electron scattering (Thomson, Compton, Rayleigh scattering)
- Dust (Mie) scattering
- Resonant line scattering

Scattering-induced polarization

 Electron scattering (Thomson, Compton, Rayleigh scattering)

Polarization phase function:

Differential cross section

wikipedia website

Photon – matter interactions causing (de-)polarization

Photon – particle:

- Electron scattering (Rayleigh, Thomson, and Compton)
- Resonant line scattering
- Dust scattering
- Dichroic absorption

Photon – magnetic field:

- Synchrotron emission
- Faraday depolarization

Radio-quiet objects Hidden type-1 AGN

A major break-through for the unified model of NGC 1068 (Antonucci & Miller 1985)

→ periscope view of AGN in polarized flux

A 3D image of the scattering clouds in NGC 1068

Capetti et al. 1995

Kishimoto et al. 1999

Phase function of Thomson scattering Spatial distribution of polarized flux Assuming optically thin matter

→ 3D image of the scattering region!

Radio-quiet objects Hidden type-1 AGN

In the following, more and more hidden type-1 nuclei were found in Seyfert 2 galaxies.

The polarization dichotomy of AGN was established:

Type-2 \rightarrow *P.A.* _____ jet axis

Type-1 \rightarrow P.A.jet axis,
except for dominant
polar scattering

See Antonucci (1993) and Smith et al. (2002) and references therein for a summary

Modeling polarization with STOKES

- Monte-Carlo radiative transfer in 3D
- Various geometries for the emission / scattering regions
- polarisation due to (multi-)electron scattering and dust (Mie-)scattering
- Resonant line scattering routines implemented
- Photo- and K-shell ionization
- variabiliy and evolution of the system

Public access http://www.stokes-program.info/

optical/UV

The polarization dichotomy of AGN

Modeling a composition of flared electron disk, dusty torus, and polar electron cones.

Goosmann et al. (2008)

The X-ray polarization of disk reprocessing

- Polarization is always parallel to the symmetry axis
- *P* rises with inclination
- The Compton hump is slightly more polarized than the soft continuum
- *P* drops steeply across the lines

Θ

Face-on

Λ | V

edge-on

Edge-on

Λ Ι V

face-on

X-ray polarimetry from Compton thicker to thinner...

 $\mathbf{P}_{\mathbf{C}}$

Modeling of an irradiated accretion disk at the center of a dusty torus with half-opening angle of Q=30° Goosmann & Matt 2011

Modeling of an irradiated accretion disk, a dusty torus with $Q=60^{\circ}$, and inclined outflows as suggested by Raban et al. (2009).

Goosmann & Matt 2011

Possibility to measure the relative angle between torus and outflows by broad-band polarimetry!

Modeling of an irradiated accretion disk, a dusty torus with Q=60°, and inclined outflows as suggested by Raban et al. (2009).

Goosmann & Matt 2011

Possibility to measure the relative angle between torus and outflows by broad-band polarimetry!

Modeling of an irradiated accretion disk, a dusty torus with $\Theta = 60^{\circ}$, inclined outflows as suggested by Raban et al. (2009).

Table 2. Rotation $\Delta \psi = \psi(20 \text{ keV}) - \psi(2 \text{ keV})$ of the polarization angle and range of the polarization percentage *P* between 20 and 2 keV for the two values of τ_{cone} examined in Section 4.3 (columns 1 and 2) and Section 4.4 (columns 3 and 4).

	0.02		$_{\rm e} = 0.3$ (equat. wed (°), ΔP (per cent)	
viewing angle i	$\tau_{\text{cone}} = 0.03$ $\Delta \psi$ (°), ΔP (per cent)	$\tau_{\rm cone} = 0.3$ $\Delta \psi$ (°), ΔP (per cent)	-27.3 = 12.6	
$\cos i = 0.45, i \approx 63^{\circ}$	84.9 - 20.0 = 64.9 4.8-21.3	32.9 - 19.3 = 13.6 6.8-36.7	-20.0 = 4.7 -44.6 -19.4 = 1.5	
$\cos i = 0.35, i \approx 70^{\circ}$	74.6 - 18.3 = 56.3 2.8-41.3	23.4 - 18.4 = 5.0 13.6-45.6	-49.6 - 18.9 = 0.3 - 53.7	
$\cos i = 0.25, i \approx 76^{\circ}$	40.6 - 17.8 = 22.8 4.0-50.3	20.3 - 17.9 = 2.4 25.8 - 51.0	-18.6 = -0.2 -56.4	
$\cos i = 0.15, i \approx 81^{\circ}$	23.4 - 17.5 = 5.9 16.6-56.9	18.6 - 17.6 = 1.0 43.5 - 55.1	Matt 2011	
$\cos i = 0.05, i \approx 87^{\circ}$	18.7 - 17.5 = 1.2 52.7-60.2	17.9 - 17.3 = 0.6 55.3-57.7		

Modeling of an irradiated accretion disk, a dusty torus with $\Theta = 60^{\circ}$, inclined outflows as suggested by Raban et al. (2009). including an equatorial scattering wedge

Table 2. Rotation $\Delta \psi = \psi(20 \text{ keV}) - \psi(2 \text{ keV})$ of the polarization angle and range of the polarization percentage *P* between 20 and 2 keV for the two values of τ_{cone} examined in Section 4.3 (columns 1 and 2) and Section 4.4 (columns 3 and 4).

	- 0.02 (amont and)	- 0.2 (amount 1.2)	e = 0.3 (equat. we (°), ΔP (per cent
Viewing angle i	$\tau_{\rm cone} = 0.03$ (equal: wedge) $\Delta \psi$ (°), ΔP (per cent)	$\tau_{\rm cone} = 0.3$ (equat. wedge) $\Delta \psi$ (°), ΔP (per cent)	-27.3 = 12.6 15.9
$\cos i = 0.45, i \approx 63^{\circ}$	85.9 – 78.4 = 7.5 7.7–6.9	39.9 - 27.3 = 12.6 7.2-15.9	-20.0 = 4.7 -44.6 -19.4 = 1.5
$\cos i = 0.35, i \approx 70^{\circ}$	75.8 - 20.1 = 55.7 4.5-41.3	24.7 - 20.0 = 4.7 15.8-44.6	-49.6 - 18.9 = 0.3 - 53.7
$\cos i = 0.25, i \approx 76^{\circ}$	47.8 - 19.3 = 28.5 4.4-48.8	20.9 - 19.4 = 1.5 26.4 - 49.6	-18.6 = -0.2 -56.4
$\cos i = 0.15, i \approx 81^{\circ}$	24.8 - 18.8 = 6.0 17.0-55.2	19.2 - 18.9 = 0.3 43.8 - 53.7	Matt 201
$\cos i = 0.05, i \approx 87^{\circ}$	18.8 - 18.5 = 0.3 53.1 - 58.8	18.4 - 18.6 = -0.2 55.3-56.4	

Observational prospects

Gravity and Extreme Magnetism SMEX (2014)

• NASA small explorer mission explicitly dedicated to X-ray polarimetry

• Stereo focusing telescope connected to the X-ray Polarimeter Instrument (XPI) operating at

PERMIN - PERMISER - 2-NET POLANCIALEN - PERMI - NETSTINGS - - CONNEX Sensor - 2-Net Telescon - (Telescon - André Permis Rado Rolf Bourt Boart - Mont - Mont - Martin - Rado - Rado - Rado - Rado - Rado - Nets Strong - Latere, Exist -- Name - Name - Name - Note - Strong - Name - Name

Black et al. 2007

Modeling of an irradiated accretion disk, a dusty torus with Q=60°, and inclined outflows as suggested by Raban et al. (2009).

Goosmann & Matt 2011

Possibility to measure the relative angle between torus and outflows by broad-band polarimetry!

Conclusions

• Polarization gives <u>two additional observables</u> (besides the spectral intensity) as a function of wavelength and time.

• In order to understand the polarization signal of complex X-ray sources, coherent modeling is necessary including all photon-matter interactions.

• X-ray polarimetry of NGC 1068 will unambiguously measure the P. A. of the ionization cones close to the nucleus (GEMS).

• Broad-band X-ray polarimetry up to 25 keV is technologically feasible (see NHXM proposal, Tagliaferri et al. 2011) and could even constrain the amount of a misalignment between the outflows and the torus in NGC 1068.

THANK YOU FOR YOUR ATTENTION!