Chandra's view of local optically "dull" X-ray bright galaxies

Daryl Haggard Northwestern University/CIERA

NORTHWESTERN UNIVERSITY CIERA

YAi

Collaborators

- James Madison University
 - Anca Constantin
- Harvard-Smithsonian Center for Astrophysics
 - Paul J. Green
 - Dong-Woo Kim
- University of Washington
 - Scott F. Anderson
- University of Birmingham
 - Ewan O'Sullivan

ROSAT

Chandra

X-ray Bright, Optically Normal Galaxies

- XBONG (a.k.a. optically "dull" X-ray bright gals)
 - Substantial (AGN-like) X-ray luminosity e.g., Elvis et al. 1981
 - No narrow or broad optical emission lines

Daryl Haggard, Northwestern/CIERA

X-ray Bright, Optically Normal Galaxies

- Why no AGN-like optical emission lines?
 - Dilution: AGN emission diluted by host starlight

Moran et al. 2002; Caccianiga et al. 2007; Trump et al. 2009

- Obscuration: Both broad & narrow line regions obscured Comastri et al. 2002; Rigby et al. 2006
- Inefficient Accretion: RIAFs with truncated disks (little optical/UV) Yuan & Narayan et al. 2004; Trump et al. 2009
- Variability: data not coeval; tidal disruptions

Komassa et al. 2004; Gezari et al. 2006

- Extended hot gas: poor or "fossil" galaxy groups

Jones et al. 2003; Georgantopoulos & Georgakakis et al. 2005

Motivation

- Low-z (<0.37) *Chandra* sample
 - X-ray spectral constraints and spatial modeling
 - High S/N
 - H α in the optical spectrum
 - Deep, multivaelength optical imaging for environment studies (via photometric redshifts)
 - Host galaxy morphology
 - ROSAT + Chandra enables some variability analysis
 - Unique look at a rare population

Motivation

- Low-z (<0.37) Chandra sample
 - X-ray spectral con
 - High S/N
 - H α in the optical s
 - Deep, multivaeler environment stud
 - Host galaxy morpl
 - ROSAT + Chandra
 - Unique look at a r

Sample Selection

8 local targets selected for Chandra follow-up:

Name (SDSS)	r (mag)	Z	RASS (cnts/s)	log L _x (erg/s)	match conf (%)
J0814+3827	17.92	0.3133	0.033	44.00	89
J0854+4431	17.94	0.3086	0.026	43.88	78
J1058+4108	18.16	0.3236	0.066	44.34	78
J1200+4834	17.29	0.2747	0.019	43.63	90
J1308+5538	19.07	0.3675	0.020	43.94	89
J1452+4431	18.10	0.2866	0.028	43.85	87
J2047-0619	17.71	0.2520	0.023	43.63	87
J2124+1147	17.56	0.3000	0.019	43.72	79

Berlin 2011

Daryl Haggard, Northwestern/CIERA

Sample Selection

	SDSS spec	z ~ 0.3		RASS bright	
Name (SDSS)	r (mag)	Z	RASS (cnts/s)	log L _x (erg/s)	match conf (%)
J0814+3827	17.92	0.3133	0.033	44.00	89
J0854+4431	17.94	0.3086	0.026	43.88	78
J1058+4108	18.16	0.3236	0.066	44.34	78
J1200+4834	17.29	0.2747	0.019	43.63	90
J1308+5538	19.07	0.3675	0.020	43.94	89
J1452+4431	18.10	0.2866	0.028	43.85	87
J2047-0619	17.71	0.2520	0.023	43.63	87
J2124+1147	17.56	0.3000	0.019	43.72	79

No Measurable Clustering

- Association with groups and clusters possible
- RASS sources not reliably extended until 1', but 97% of sources above 20" extent excluded

Bohringer et al. 2000

- Eliminate catalog matches
- RASS XBONG cands no more clustered than non-RASS passives

SDSS Imaging

SDSS Spectroscopy

SDSS J1200+4834

Extended hot gas!?

SDSS J1200+4834

SDSS1200+4834

- Fit MEKAL model to X-ray spectrum
 - ~1100 counts
 - -kT = 3.45 keV
 - Abund = 0.3174 solar

$$-f_{0.3-8keV} =$$

4.81 x 10⁻¹³ erg/s/cm²

$$-L_{0.3-8keV} =$$

1.14 x 10⁴⁴ erg/s

L_x-T_x Relation for Clusters/Groups

Daryl Haggard, Northwestern/CIERA

Extended X-ray Emission

L_x-T_x Relation for Clusters/Groups

Daryl Haggard, Northwestern/CIERA

SDSS (g-r) vs. I CMD

Point Sources/Marginal Detections

Radiatively Inefficient Accretion and/or X-ray Variables

... host dilution also possible.

Summary

- At higher-z (0 < z < 1) XBONGS are a heterogeneous popultion
 - COSMOS (48): 70% diluted by host; 30% likely RIAFs
 - Xbootes (~250): dilution at low-z (<0.3); some obscuration; RIAF likely (z>0.3); some BL Lac
- We perform one of the first low-z (<0.37) *Chandra* surveys of XBONG candidates

Summary

- 8 low-z XBONGs:
 - 4 or 5 extended in the X-ray
 - SDSS J1200+4834: radial profile and X-ray spectrum consistent with a (fossil?) group
 - 1 with point-like X-ray emission may be explained by RIAF or host dilution
 - 2 or 3 show no strong X-ray emission, possibly due to X-ray variability (tidal disruption events?)
- Need larger X-ray sample at low-z + highquality redshifts to study environment