Systematic Errors on Black Hole Spin

Anne Lohfink

Chris Reynolds Richard Mushotzky Mike Nowak

University of Maryland

June 27, 2011

Black Hole Spin Measurements

Measuring Black Hole Spin?

 \Rightarrow Measurement from relativistic Fe K α line

BUT: Line is only a part of reflection spectrum!

We need to ...

- ... model the entire reflection spectrum
- ... understand the entire continuum

Problems – Motivation

Current Status: some measurements made for AGN (\sim 10) (e.g. Dabrowski et al. 1997, Nandra et al. 1997, 2007, Brenneman & Reynolds 2006, Gallo et al. 2010)

⇒ What about systematic errors?

Most cited possible error sources:

- narrow components in iron K-band
- unknown emissivity profile
- no line emission from within ISCO (Reynolds & Fabian 2008)
- \rightarrow There must be many more!

Problems - Motivation

Current Status: some measurements made for AGN (\sim 10) (e.g. Dabrowski et al. 1997, Nandra et al. 1997, 2007, Brenneman & Reynolds 2006, Gallo et al. 2010)

⇒ What about systematic errors?

Most cited possible error sources:

- narrow components in iron K-band
- unknown emissivity profile
- no line emission from within ISCO (Reynolds & Fabian 2008)
- → There must be many more!

Goals for this project:

- 1) Identify errors
- 2) Determine their impact
- 3) Try to improve measurements

Fairall 9 - Previous Work

Previous Spin Studies on Fairall 9 (z = 0.047):

	Soft Excess	Spin
Schmoll et al. 2009	Blurred Reflection	
Emmanoulopoulos et al., 2011	Blurred Reflection	$0.39^{+0.49}_{-0.30}$
Patrick et al., 2011	Comptonization	$0.67^{+0.10}_{-0.11}$

⇒ All previous studies note the absence of warm absorption!

Study **Typical** AGN!

(Schmoll et al., 2009)

Data - Fairall 9

Available Data:

- 2× Suzaku (140 ks & 190 ks) (2007 & 2010)
- 2× XMM (15 ks & 90 ks) (2000 & 2009)

Energy (keV)

⇒ There is some spectral variability on timescales of years!From light curves:

overall source flux changes over time no (very little) variability within pointings

⇒ use pointing averaged spectra

The iron line

 \Rightarrow Relativistic Line is present in spectra!

 \Rightarrow Line required in <u>all</u> fits!

Spectral Analysis

Base model:

continuum + cold reflection + blurred ionized reflection \rightarrow Galactic absorption

Details:

```
continuum & cold reflection: pexmon (Nandra et al. 2007) models power law + Fe K\alpha, Fe K\beta, Ni K\alpha + Compton hump ionized reflection: reflionx (Ross et al. 2004)
```

computes reflection spectrum for irradiation by a power law blurring: relconv (Dauser et al. 2010)

relativistic blurring kernel, that assumes broken power law emissivity profile

photoelectric absorption: TBnew (Wilms et al. 2001)

Spectral Analysis – Results

General results from fits to individual pointings:

very good fit to the data, but: scattered results

- sub-solar abundances
- pointings, XMM - Suzaku

(e.g. inclination: \sim 5 deg vs. \sim 45 deg)

- emissivity indexes: first one \gg 3 & second one <3
- spin parameter: mostly very high

⇒ Why is the spin so high?

Narrow lines?!?

Two possibilities: Collisionally Excited Plasma OR Photoionization

- ⇒ We cannot differentiate...but lines improve fit!
- ⇒ Ionization state is high!
- ⇒ Spectral Parameters are still scattered and spin is still rather high!

Possible Errors – An Incomplete List

- blue wing of relativistic line
 ⇒ FeXXV & FeXXVI
- continuum/soft excess
- emissivity profile
- uncertainties in models (reflection models, etc.)
- accretion disk & reflection Physics
- ..

BUT: depends on object and exact line shape

⇒ Try Multi-Epoch Fitting!Which parameters are tied?

- iron abundance
- spin
- inclination of accretion disk

Modeling of the Soft Excess

Possibilities for the soft excess:

blurred reflection + ...

- ... nothing
- ... bremsstrahlung
- ... luke warm Comptonization
- ... power law
- ⇒ Soft excess improves fits!

⇒ Soft excess can drive spin constraints! (because the signal-to-noise is very high at lower energies)

The emissivity profile

The influence of the emissivity profile

Example: lamp-post model

In plot:

no add. soft excess:

broken power law lamp-post profile

Comptonization: broken power law lamp-post profile

⇒ Emissivity profile determines constraints but not spin value!

Summary

For Fairall 9, we can say that...

- a relativistic component is required BUT: accretion disk parameters are inconsistent for fits to individual pointings
- the base model works
- a composite soft excess model is required
- spin constraints are influenced by various systematic errors
- indications for narrow emission features (Fe XXV and Fe XXVI) that can skew the measured accretion disk parameters
- systematic errors on BH spin ≫ statistical errors
- multi-epoch fitting is necessary to allow for consistent modeling of spectra

 \Rightarrow Preliminary spin measurement: 0.4 ± 0.2 (for soft excess modeled by comptt and narrow lines included) Applies to other bare Seyferts as well!

Back-Up frames

Continuum (In)Dependence?

soft excess: blurred reflection optically thick Comptonization reflection fraction: high low spin value: very high (0.99) low/medium (\sim 0.21)

⇒ Soft excess can drive spin constraints!

⇒ Spin constraints are model dependent!

Need to perform attitude correction!

Contamination issue makes soft energy part of the spectrum unusable for XIS0!