The bolometric output of AGN in the XMM-COSMOS survey

Elisabeta Lusso

Dipartimento di Astronomia
Università di Bologna-INAF/OABO

The X-ray Universe: Berlin, June 30 2011
Multi-wavelength database → statistically relevant sample of unobscured (Type 1, Lusso et al. 2010) and obscured (Type 2, Lusso et al., subm.) AGN.

- Broad band (from IR to X-rays) SED of Type-1/2 AGN.
- Robust estimate of the nuclear emission (L_{bol}, k_{bol}).
- k_{bol} versus L_{bol} at [0.5-2]keV and [2-10]keV.
Multi-wavelength database \rightarrow statistically relevant sample of unobscured (Type 1, Lusso et al. 2010) and obscured (Type 2, Lusso et al., subm.) AGN.

- Broad band (from IR to X-rays) SED of Type-1/2 AGN.
- Robust estimate of the nuclear emission ($L_{\text{bol}}, k_{\text{bol}}$).
- k_{bol} versus L_{bol} at [0.5-2]keV and [2-10]keV.
Multi-wavelength database → statistically relevant sample of unobscured (Type 1, Lusso et al. 2010) and obscured (Type 2, Lusso et al., subm.) AGN.

- Broad band (from IR to X-rays) SED of Type-1/2 AGN.
- Robust estimate of the nuclear emission (L_{bol}, k_{bol}).
- k_{bol} versus L_{bol} at [0.5-2]keV and [2-10]keV.
Multi-wavelength database → statistically relevant sample of unobscured (Type 1, Lusso et al. 2010) and obscured (Type 2, Lusso et al., subm.) AGN.

- Broad band (from IR to X-rays) SED of Type-1/2 AGN.
- Robust estimate of the nuclear emission \(L_{\text{bol}}, k_{\text{bol}}\).
- \(k_{\text{bol}}\) versus \(L_{\text{bol}}\) at [0.5-2]keV and [2-10]keV.
545 X-ray selected radio quiet Type 1 AGNs from the XMM-COSMOS wide field survey (2 deg2, 1822 sources, $\langle t \rangle \sim 50$ ks, Brusa et al. 2010) → 322 spectroscopically identified
→ Additional 223 AGNs with a Type 1 SED from the photo-z sample (Salvato et al. 2009)
wide range of redshift $0.04 \leq z \leq 4.25$, wide range of X-ray luminosities $40.6 \leq \log L_{[2-10]keV} [\text{erg s}^{-1}] \leq 45.3$
UV to X-ray Properties

α_{ox} vs $L_{2500\text{Å}}$

- Red crosses = photometric sources
- Black circles = spectroscopic sources
- Slope = 0.14 for an optically selected sample (Steffen et al. 2006)
- Slope = 0.15 for our X-ray selected sample
- Highly significant correlation (17 σ from Kendall-τ)
- $\Delta \alpha_{\text{ox}} = \alpha_{\text{ox}} - \alpha_{\text{ox}}(L_{2500\text{Å}})$
α_{ox} vs $L_{2500\AA}$

- red crosses = photometric sources
- black circles = spectroscopic sources
- slope = 0.14 for an optically selected sample (Steffen et al. 2006)
- slope = 0.15 for our X-ray selected sample
- highly significant correlation (17 σ from Kendall-τ)

$\Delta\alpha_{ox} = \alpha_{ox} - \alpha_{ox}(L_{2500\AA})$
α_{ox} vs $L_{2500\AA}$

- red crosses = photometric sources
- black circles = spectroscopic sources
- slope = 0.14 for an optically selected sample (Steffen et al. 2006)
- slope = 0.15 for our X-ray selected sample
- highly significant correlation (17 σ from Kendall-\(\tau\))

\[\Delta \alpha_{ox} = \alpha_{ox} - \alpha_{ox}(L_{2500\AA}) \]
UV to X-ray Properties

$k_{\text{bol}} \text{ vs } \alpha_{\text{ox}}$

Log $k_{\text{bol}} = 1.561 - 1.853\alpha_{\text{ox}} + 1.226\alpha_{\text{ox}}^2$

- 343 Type 1 AGN with detection in both [0.5-2]keV and [2-10]keV
- $1\sigma = 0.078$
- $3\sigma = 0.234$
- $\alpha_{\text{ox}} \rightarrow$ estimate of k_{bol}
- if the $L_{[2-10]\text{keV}}$ is available (from X-ray spectra) \Rightarrow compute L_{bol}
- no need of multiwavelength data and SED extrapolation
k_{bol} vs λ_{Edd} and α_{ox} vs λ_{Edd}

150 Type 1 AGN with BH mass estimate (using the Mg II line width)
red open circles: 25 Type 1 AGN from Vasudevan & Fabian (2009)
high accretion rate onto SMBH \rightarrow efficient accretion disk \rightarrow prominent UV bump \rightarrow steep α_{ox}
The data set

Type-2 AGN:

- **Hard X-ray sources:**
 \[F_{[2-10]\text{keV}} \geq 2 \times 10^{-15} \text{[erg s}^{-1}\text{cm}^{-2}] \]
 \[41.06 \leq \log L_{[2-10]\text{keV}} \leq 45.02 \]
- **secure** optical counterpart
- **spectroscopic** redshift \(0.045 \leq z \leq 3.524 \)

\[\Rightarrow 255 \text{ Type-2 AGN} \]
Average SED (AGN+Host-galaxy)

- Multi-wavelength data:
 - SPITZER/MIPS: 160-70-24 μm
 - IRAC: 3.6 μm-4.5 μm-5.8 μm-8.0 μm
 - CFHT: J-K-i*-u*band
 - SUBARU, GALEX, XMM-Newton:[0.5 – 2]keV-[2 – 10]keV.
- Rest-frame data interpolation (linear+"smoothing")
- Normalize at 1 μm luminosity
- Binning & average each bin
Average SED (AGN+Host-galaxy)

- Flat average X-ray slope
 \[\langle \Gamma_X \rangle = 1.12 \] (not corrected for \(N_H \))
- Optical-UV: dominant host-galaxy contribution
- near-IR to mid-IR: increasing contribution from the AGN,

but very few sources with detection at 160-70 \(\mu m \)...
...waiting for far-IR data from Herschel
same number of sources in each bin: 40 AGN per bin.
Binned average SED (AGN+Host-galaxy)

- low luminosity bins \rightarrow SED "galaxy shape"
- high luminosity bins in near/mid-IR \rightarrow flatter SEDs \rightarrow AGN emission
Main goal:

to properly disentangle the emission associated to stellar light from that due to accretion.

1. Stellar mass
2. SFR
3. AGN bolometric luminosity and bolometric correction
SED-fitting

- AGN component: Silva et al. (2004)
Bolometric correction

- 240 Type-2 with N_H and AGN best-fit.
- 109 AGN with N_H from X-ray spectra
- 131 AGN with N_H from HR.
- 306 Type-1 from Lusso et al. (2010).
Bolometric correction

AGN template spectrum from a set of power laws (enforce the relationship between the α_{ox} and luminosity (e.g., Vignali, Brandt and Schneider 2003) → AGN bolometric luminosity function & BH mass function

Disadvantage: no window onto the actual variation of k_{bol} in the real AGN population.

$$L_{\text{bol}} = 1.0 \times 10^{12} \ L_\odot$$

![Graph showing the bolometric correction and AGN spectrum with various power laws and luminosity functions.](image-url)
Bolometric correction

The bolometric output of AGN

Log $L_{[2-10] \text{keV}} = 43.30 \div 44.30$:

$\langle k_{\text{bol}} \rangle \sim 13 \pm 1$ Type-2

$\langle k_{\text{bol}} \rangle \sim 23 \pm 1$ Type-1

(significantly different at the 7σ level)
Bolometric correction

- 240 Type-2 with N_H and AGN best-fit.
- 109 AGN with N_H from X-ray spectra.
- 131 AGN with N_H from HR.
- 306 Type-1 from Lusso et al. (2010).

Log $L_{[2-10] \text{keV}} = 43.30 \div 44.30$:

$\langle k_{\text{bol}} \rangle \sim 13 \pm 1$ Type-2

$\langle k_{\text{bol}} \rangle \sim 23 \pm 1$ Type-1

(significantly different at the 7σ level)
Bolometric correction: Type-2 AGN (preliminary!!)

The bolometric output of AGN

Elisabeta Lusso (INAF-OABO)
Bolometric correction: Type-1 AGN (preliminary!!)

The bolometric output of AGN

[0.5-2]keV

[2-10]keV
Bolometric correction: Type-1 vs. Type-2 AGN (preliminary!!)

The bolometric output of AGN
Summary & Conclusions

1. Significant correlation between α_{ox} and the UV luminosities.

2. Significant correlation between both k_{bol} and α_{ox} with $\lambda_{\text{Edd}} = \frac{L_{\text{Bol,1\mu m}}}{L_{\text{Edd}}}$: high accretion rate \Rightarrow large UV bump \Rightarrow steep α_{ox}.

3. Significant correlation between k_{bol} and α_{ox}: estimate of L_{bol} without multiwavelength data.

4. Trend of smaller k_{bol} for Type-2 AGN than Type-1 AGN at a given X–ray luminosity.

5. Correlation between k_{bol} (at [0.5-2]keV and [2-10]keV) and L_{bol} for both Type-1 and Type-2 AGN.