Revealing the young stellar population in the S254-S258 region with X-rays

Young Stars & Star Formation

Paola Mucciarelli In collaboration with: Thomas Preibisch Hans Zinnecker

Outline

- S254/S258 overview
- Analysis of our Chandra X-observation (Mucciarelli et al. 2011)
- Source catalog and basic properties
- Characteristic of the X-ray stellar population in S254/S258
- Preliminary cross-correlation with other wavelength
- Conclusion and perspectives

The star forming region S254/S258

The star forming region S254/S258

S255IR (S255-2: e.g. Chavarria et al 2008, Wang et al 2011)

 evident signature of ongoing SF (IR sources; OH, H2O and methanol masers; jets, molecular outflows; HH-like objects)

S254

estimated age 1 Myr.

S258

Mucciarelli

X-ray Universe 2011

S255N S255N (e.g.Wang et al 2011):

 evident signature of massive SF (far-IR emission; three cores with 6-35 Msun)

no NIR emission > earlier
 stage than S255IR;

S255-2

S255S

S255S: in a pre-stellar phase (Minier et al. 2007)

> LBT LUCIFER, courtesy of A. Bik Blue: H-band , Green: H2, Red: K-band

The missing low-mass stars

- Isolated B0 stars (16 Msun) at the center of S255 and S257
- Several hundreds low-mass stars are expected according standard IMF (Kroupa 2011)

Possible solutions:	Low mass	stars
Bimodal star formation: first evidence	ever!	No
Dynamical ejection: not excluded		No
Multiple generations scenario		yes

Chandra observation

PI: Thomas Preibisch
Performed on November 21/23, 2009
Two pointings:
 10983 (40.6 Ks)
 12022 (34.2 Ks)

Good total observing time of ~ 73 Ks
Spatial resolution 0.5 arcsec
Mean background level 0.02 counts/pixel
Sensitivity limit L~2.9x10^{29.5} erg/s:
Detection completeness:
 90% for masses greater of 0.5 Msun
 50% for masses smaller of 0.25 Msun

Final catalog of 364 detected sources (ACIS EXTRACT, Broos et al. 2010)

X-ray spectra

Absorption	*	Vapec
	*	<u> Vapec + Vapec</u>
	*	Power Law

25 sources with more than 80 counts

no sources with kT < 0.5 keV (6MK)
5 sources with kT > 6 keV
$N_{\rm H} = 20 - 23.08 \ {\rm cm}^{-2}$ (A _V ~ 0.1 to 65 mag)
average of 22.04 ($A_V \sim 6 \text{ mag}$)

$(10^{22} \text{cm}^{-2}) $ (4)	$ \begin{array}{c} kT_1 \\ (keV) \\ (5) \end{array} $	$ \begin{array}{c} kT_2 \\ (\text{keV}) \\ (6) \end{array} $
0.65	0.7	1000
1.10	15.0	223
2.42	2.6	-
0.26	0.5	-
0.03	9.4	-
1.17	[15.]	0000
0.91	3.8	
0.36	0.6	3.43
0.41	3.1	-
0.01	1.5	-
0.34	0.7	0000
0.01	1.0	
11.90	54.2	3440
		-
9.69	5.4	
7.20	8.6	
2.00	0.9	8.73
2.21	2.6	-
3.65	7.9	-
1.65	3.9	-
0.55	5.0	
1.53	1.6	<u></u>
0.01	1.0	223
0.81	5.6	-
1.30	3.8	-
1.41	4.3	5775

X-ray source variability

AE Preliminary indication of variability

- 23 variable sources
- 19 possibly variable sources

Difference between the count rate of the two observations:

21 sources

5 flare-like 10 peak 15 irregular Few in/de-creasing

Mucciarelli X-ray Universe 2011

061231.17+180853.8

20 Time [ks]

15

10

Obs. 10983

Cross-correlation & contamination

Preliminary work:

- DSS 26% (94 sources)
- 2MASS 60% (230 sources)
- Spitzer (Chavarria et al 2008) 80% (292 sources)

46 sources (outside the central cluster) with no counterpart in optical/near-IR/IR

Comparison with CCCP (Chandra Carina Complex project, Townsley et al. 2011 + 16 papers)

Scaling the fov and the distance:

- ~10 foreground stars
- 48 backgrouns AGNs

Expected level of contamination

of S254-S258 sample < 15%

Spatial distribution of X-ray sources

S255IR: 45 sources
S256: 12 sources
S258: 7 sources
250 widely distributed
X-ray young stars

With our detection limit logL~29.5 we should detect: • 70% young stars [0.5-2] Msun • 30% young stars [0.1-0.5] Msun About 260 expected sources

Mucciarelli X-ray Universe 2011

X-ray luminosity function

Comparing with COUP (Chandra Orion Ultradeep Project, Getman et al 2005): similar shape at logF > -6

- Lack of X-ray luminous O stars
- Higher sensitivity limits
- Smaller stellar population?

Slope of high luminosity tail
 (30.5 < logL < 32):
 COUP ~ -0.95 ± 0.09</pre>

■ S254-S258 ~ -0.91 ± 0.10

Total expected population: ~2000 objects

Summary.& Perspectives

- Reasonable X-ray sample of 364 sources, complete down to 0.5 Msun;
- Spatial distribution of the sources support the multiple generation scenario;
- Comparison with the Carina XLF give a total expected population of about 2000 associated young stars.
- See Mucciarelli et al 2011
 [http://arxiv.org/abs/1106.2003]
- Ongoing detailed analysis of optical and IR properties of individual sources (age, mass, presence of circumstellar disk)