
## A Holy Grail for stellar wind analysis zeta Puppis seen by XMM

Y. Nazé (FNRS-ULg), G. Rauw (ULg), L. Oskinova (U. Potsdam), E. Gosset (FNRS-ULg), A. Hervé (ULg), C.A. Flores (U. Guanajuato)

## **Zeta Puppis**

One of the closest (335pc), earliest (O4I), and brightest massive stars Many intriguing properties : runaway star, chemical enrichment, fast rotation (post RLOF+SN ? Ejection from cluster ?) The first one observed by Chandra & XMM (Kahn et al. 2001,

Cassinelli et al. 2011)



# A decade of XMM observations

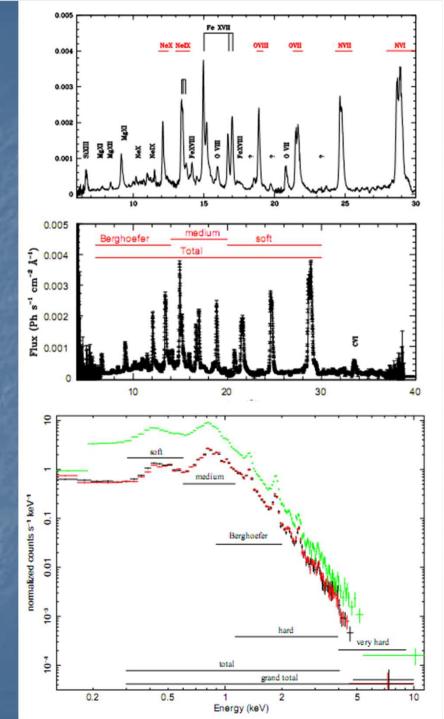
| ObsID               | Rev. | Mid-exp. Date       | JD          | EPIC-MOS1 |          |          |          | EPIC-pn   |          |          |          | RGS1      |          |          |
|---------------------|------|---------------------|-------------|-----------|----------|----------|----------|-----------|----------|----------|----------|-----------|----------|----------|
|                     |      |                     | -2 450 000. | Mode      | Sched.   | Perf.    | Real     | Mode      | Sched.   | Perf.    | Real     | Sched.    | Perf.    | Real     |
| 0095810301          | 0091 | 2000-06-08T09:32:39 | 1703.898    |           |          |          |          |           |          |          |          | 57.4 ks   | 57.4 ks  | 36.2 ks  |
| 0095810401          | 0156 | 2000-10-15T06:43:44 | 1832.780    | LW+thick  | 37.7 ks  | 37.7 ks  | 37.3 ks  | LW+medium | 35.7 ks  | 35.7 ks  | 33.4 ks  | 40.6 ks   | 40.6 ks  | 39.9 ks  |
| 0157160401          | 0535 | 2002-11-10T23:40:41 | 2589.487    | LW+thick  | 42.2 ks  | 42.2 ks  | 41.7 ks  | LW+thick  | 13.0 ks  | 13.0 ks  | 12.1 ks  | 42.4 ks   | 42.4 ks  | 41.6 ks  |
|                     |      |                     |             |           |          |          |          | LW+medium | 24.4 ks  | 24.4 ks  | 22.7 ks  |           |          |          |
| 0157160501          | 0538 | 2002-11-17T07:03:34 | 2595.794    | LW+thick  | 43.4 ks  | 41.1 ks  | 32.2 ks  | LW+thick  | 15.7 ks  | 15.7 ks  | 14.6 ks  | 43.6 ks   | 42.5 ks  | 29.8 ks  |
|                     |      |                     |             |           |          |          |          | LW+medium | 23.0 ks  | 23.0 ks  | 12.2 ks  |           |          |          |
| 0157160901          | 0542 | 2002-11-24T20:26:10 | 2603.352    | LW+thick  | 43.4 ks  | 43.4 ks  | 42.9 ks  | LW+thick  | 14.1 ks  | 14.1 ks  | 13.2 ks  | 43.6 ks   | 43.6 ks  | 43.0 ks  |
|                     |      |                     |             |           |          |          |          | LW+medium | 24.6 ks  | 24.6 ks  | 20.9 ks  |           |          |          |
| 0157161101          | 0552 | 2002-12-15T04:53:31 | 2623.704    |           |          |          |          | LW+medium | 24.2 ks  | 24.0 ks  | 11.5 ks  | 45.6 ks   | 38.9 ks  | 26.9 ks  |
| 0159360101          | 0636 | 2003-05-30T19:28:01 | 2790.311    | LW+thick  | 66.8 ks  | 62.7 ks  | 18.8 ks  | SW+thick  | 42.8 ks  | 42.7 ks  | 24.3 ks  | 72.9 ks   | 69.2 ks  | 56.2 ks  |
| 0163360201          | 0731 | 2003-12-07T02:47:04 | 2980.616    |           |          |          |          | LW+thick  | 61.2 ks  | 52.6 ks  | 32.4 ks  | 62.9 ks   | 53.6 ks  | 35.8 ks  |
| 0159360301          | 0795 | 2004-04-12T17:33:58 | 3108.232    | LW+thick  | 63.9 ks  | 41.8 ks  | 19.0 ks  | SW+thick  | 30.2 ks  | 30.2 ks  | 17.4 ks  | 64.1 ks   | 61.3 ks  | 21.1 ks  |
| 0159360401          | 0903 | 2004-11-14T01:57:57 | 3323.582    | LW+thick  | 21.9 ks  | 21.9 ks  | 21.6 ks  | SW+thick  | 29.8 ks  | 29.8 ks  | 20.9 ks  | 77.0 ks   | 63.0 ks  | 48.2 ks  |
| 0159360501          | 0980 | 2005-04-16T14:39:28 | 3477.111    | LW+thick  | 29.3 ks  | 29.3 ks  | 29.0 ks  | SW+thick  | 63.8 ks  | 63.8 ks  | 22.1 ks  | 64.2 ks   | 64.2 ks  | 31.0 ks  |
|                     |      |                     |             | SW+thick  | 34.1 ks  | 27.7 ks  | 13.4 ks  |           |          |          |          |           |          |          |
| 0159360701          | 1071 | 2005-10-15T04:04:52 | 3658,670    |           |          |          |          | SW+thick  | 59.6 ks  | 22.2 ks  | 15.5 ks  | 60.0 ks   | 30.0 ks  | 27.5 ks  |
| 0159360901          | 1096 | 2005-12-04T01:14:14 | 3708.552    | SW+thick  | 59.8 ks  | 53.5 ks  | 46.2 ks  | SW+thick  | 59.6 ks  | 53.3 ks  | 33.1 ks  | 60.0 ks   | 53.5 ks  | 43.1 ks  |
| 0159361101          | 1164 | 2006-04-17T21:48:48 | 3843.409    | LW+thick  | 58.0 ks  | 42.9 ks  | 40.1 ks  |           |          |          |          | 58.2 ks   | 52.9 ks  | 40.5 ks  |
| 0414400101          | 1343 | 2007-04-09T22:49:29 | 4200.451    | SW+thick  | 63.7 ks  | 63.7 ks  | 47.3 ks  | SW+thick  | 63.5 ks  | 63.5 ks  | 34.2 ks  | 63.9 ks   | 63.9 ks  | 48.8 ks  |
| 0159361301          | 1620 | 2008-10-14T01:15:08 | 4753.552    | SW+thick  | 66.2 ks  | 61.2 ks  | 53.3 ks  | SW+thick  | 66.0 ks  | 61.0 ks  | 38.3 ks  | 66.4 ks   | 61.5 ks  | 54.7 ks  |
| 0561380101          | 1814 | 2009-11-04T06:17:00 | 5139.762    | SW+thick  | 64.1 ks  | 64.1 ks  | 62.1 ks  | SW+thick  | 63.9 ks  | 63.9 ks  | 44.7 ks  | 64.3 ks   | 64.3 ks  | 60.5 ks  |
| 0561380201          | 1983 | 2010-10-07T23:09:52 | 5477.465    | SW+thick  | 76.7 ks  | 76.7 ks  | 74.3 ks  | SW+thick  | 76.5 ks  | 76.5 ks  | 53.5 ks  | 76.9 ks   | 76.9 ks  | 65.9 ks  |
| Total exposure time |      |                     |             |           | 771.2 ks | 679.9 ks | 579.2 ks |           | 791.6 ks | 734.0 ks | 477.0 ks | 1066.7 ks | 979.7 ks | 750.7 ks |

## **Data reduction**

The best dataset available for a massive star (~1/2 Ms for EPIC, 3/4 Ms for RGS)

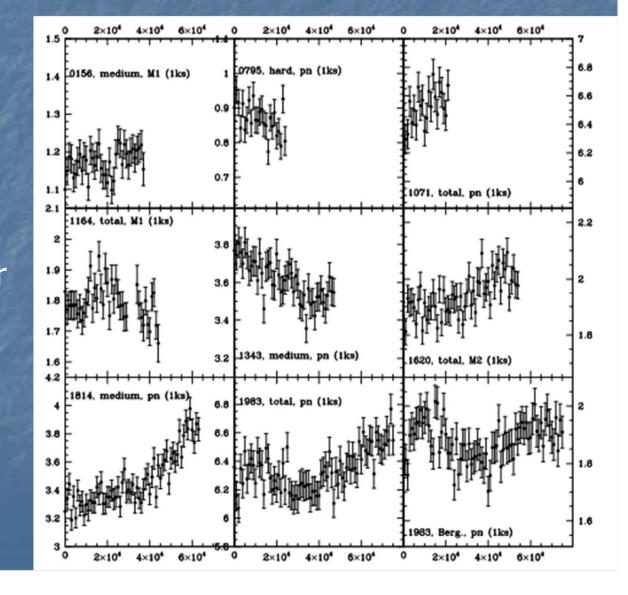
18 observations taken in different modes (timing, full frame, large window, small window), with different filters (medium, thick), sometimes off-axis
 Bright → slight pile-up (~limit of large window mode)

Extraction with pattern=0, keeping the same circular regions for source and bkgd (*NB: annular source = KO!*)
 New RGS pipeline (SAS 10) solved the flux/shift issues


## Variability of zeta Puppis

In optical : Iong-term changes (Conti & Niemela 1976) **5d variations** (e.g. Moffat & Michaud 1981) a few h pulsations (e.g. Reid & Howarth 1996) In X-rays : Einstein - nothing ROSAT revealed a small modulation (2% amplitude) of 17h period in 0.9-2 keV band (Berghöfer et al. 1996) Chandra, XMM (1 dataset) – nothing

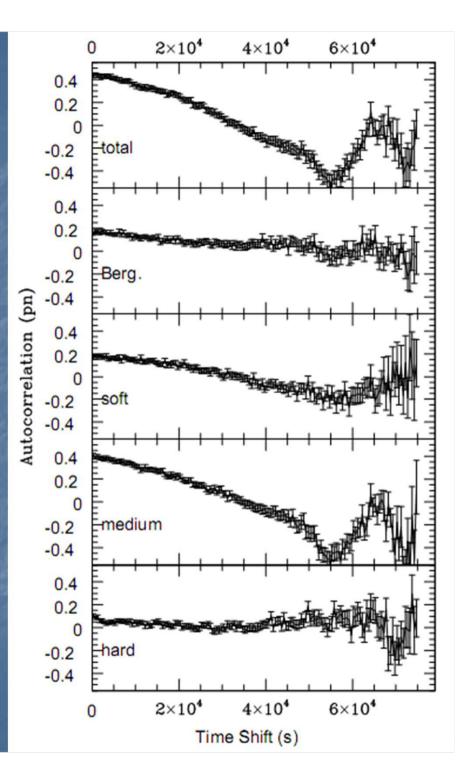
(Kahn et al. 2001, Oskinova et al. 2001)


# Variability: the XMM view

Several energy bands Several time bins (200s to 5ks EPIC, 500s to 10ks RGS) Chi-2 tests (constant, line, parabola); Fourier; **Autocorrelation Results**: Background is variable Instruments do not agree



### Variability: short & mid-term

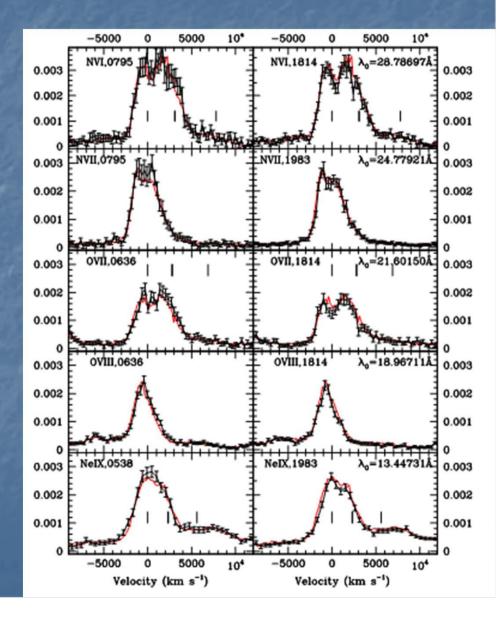

The longest you observe or the longer the time bin, the more variable it is  $\Rightarrow$  no obvious short term variations but mid-term ones exist (with timescales > Texp : rotation ?)



# Variability: short and mid-term

For the best data(small window, thick filter)Fourier

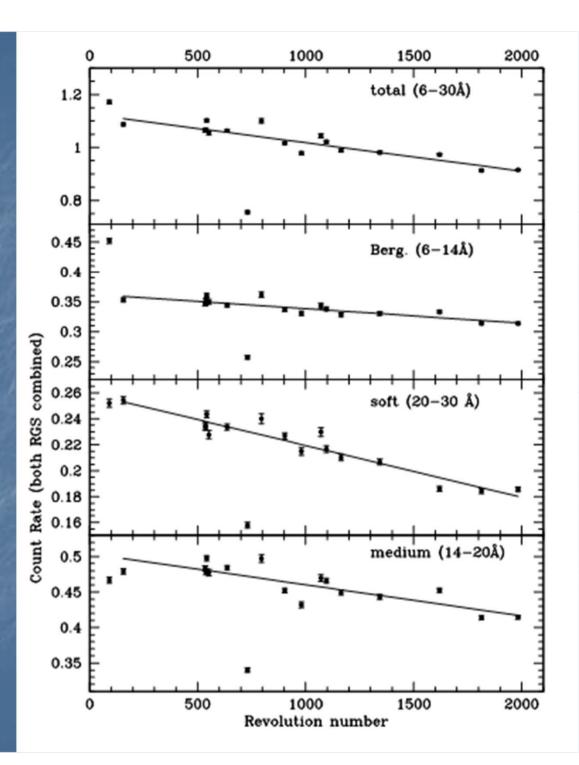
- 0.3-0.4/d + ~1/d ?
- Rotation (5d) ????
- Autocorrelation
- >0 if T<20ks, <0 @ 55ks</li>
  wind flow time ~5ks
  Not very significant anyway




Best case : pn data

# **Variability: lines**

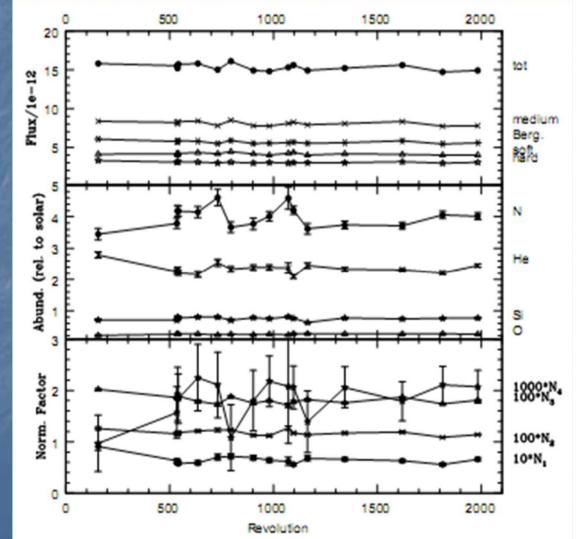
### RGS data


- TVS : nothing
- Count rates and ratios : nothing
- Comparison with average spectrum by eye : nonsignificant variations may exist but similar to optical...



# Variability: long-term

# EPIC, RGS : decrease !


 NB : Fourier, autocorrelation and relative dispersions calculated after detrending

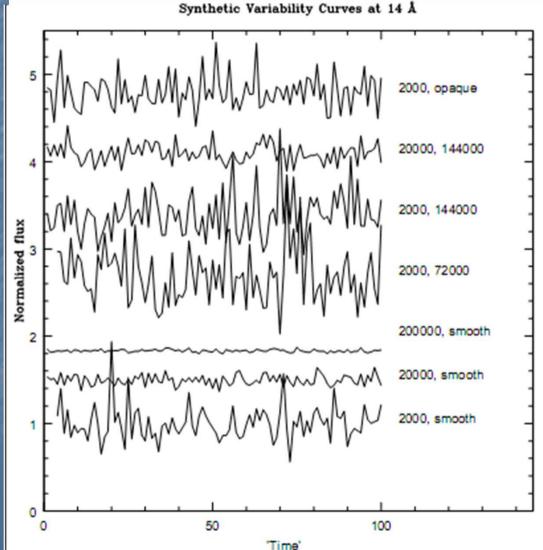


# Variability: long-term

EPIC spectra : fitted by tbabs (ISM, fixed) \* sum of 4 thermal comp. (vphabs\*vapec – Nh and kT fixed)

- Pile-up affects all data taken with medium filter
- Formally unacceptable fitting but missing physics and disagreement between instruments
- Flux appears quite constant (a few % decrease?)
   ⇒ count rate variations come from detector sensitivity changes

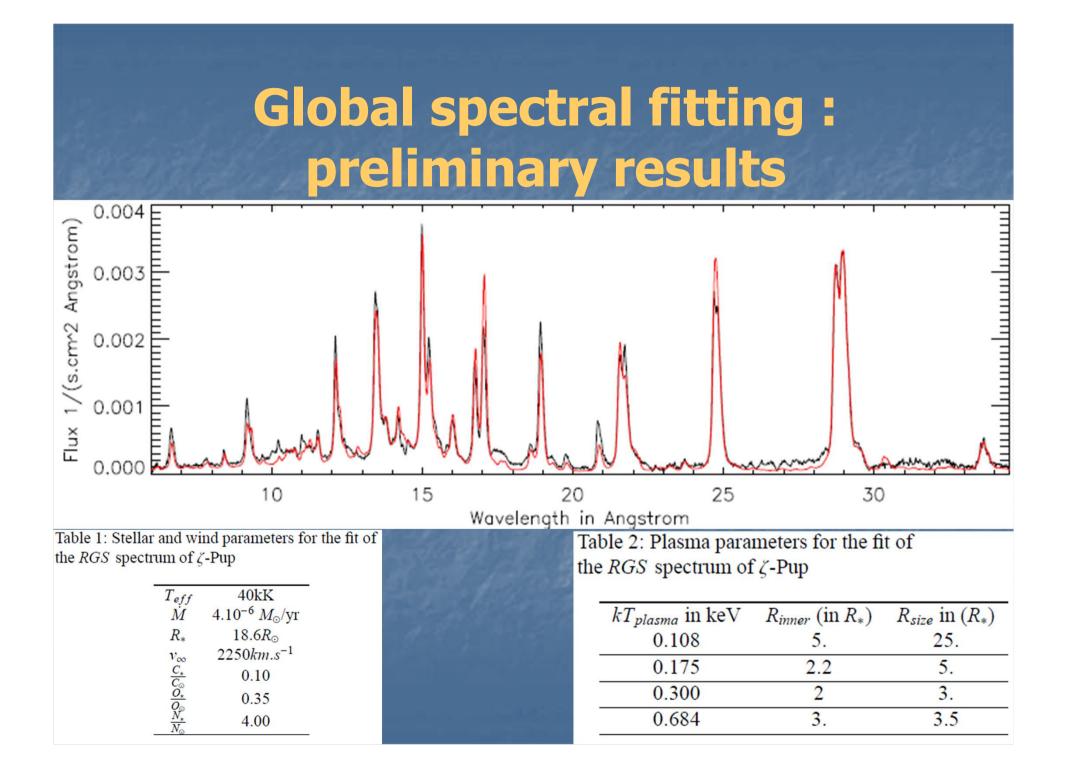



# A simple model

### Features (Oskinova et al. 2004)

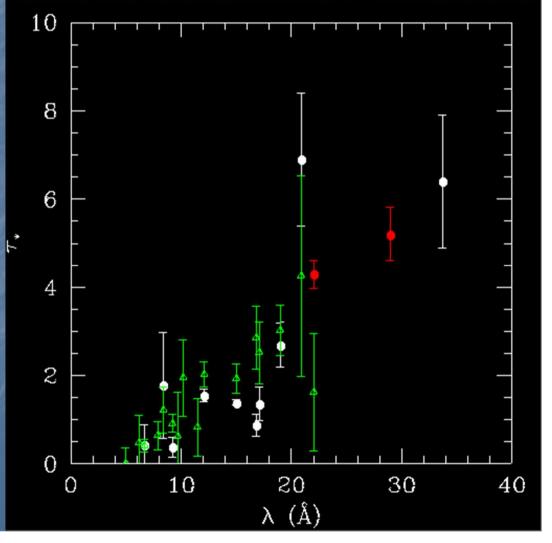
- smooth wind or random absorbers
- random emitters
- solid angle conserved, outward motion (beta law)

### LCs less variable:


- at high E
- for smooth wind
- For more emitting/absorbing clumps



# How to compare with data?


Relative dispersions calculated for each observation
 for full LCs
 for resampled LCs
 Poisson noise !
 Relative dispersions in both cases ~ Poisson statistics !

⇒ If additional variability exists, it is hidden in noise... hence its amplitude is small, and emitting/absorbing clumps are many (>10<sup>5</sup>) !



## Line fitting : preliminary results

Line profile fitting using Owocki & Cohen models : variation of tau with wavelength (cf. Cohen et al. 2010, in green – NB with resonance scattering in red) BUT /!\ uniqueness of solution...



# Conclusions

A decade of XMM observations = best dataset ! Variability

- Only noise on short-term
- Trends on mid-term (DACs ? But no link with rotation, cf. Fourier)
- Long-term decrease due to detector degradation
- Comparison with models : a lot of wind parcels needed !

### Lines

- Multi-temperature needed
- Typical optical depth varies with wavelength

### For the future...

- Follow the star over its rotation period
- Observe it with more sensitive detectors to decrease Poisson noise
- Develop more detailed models