Calculation Framework of X-ray Radiation based on Monte Carlo Simulations MONACO

Hirokazu Odaka (ISAS/JAXA) Shin Watanabe, Yasuyuki Tanaka, Dmitry Khangulyan, Tadayuki Takahashi (ISAS/JAXA), Masao Sako (Penn), Felix Aharonian (Dublin Institute for Advanced Studies)

> The X-ray Universe 2011 June 26-30, 2011 at Berlin

Acknowledgement

 Spectral modeling of accretion-powered pulsars Kazuo Makishima

Polarization calculation
Paolo Coppi

 Cross section data of scattering by helium atom Eugine Churazov

Modern X-ray Observations

have brought high-quality data containing detailed physical information

- XMM-Newton, Chandra (1999-) High-resolution grating spectrometer E/ΔE~100-1000 for point sources Line intensity, Doppler broadening/shift
- Suzaku (2005-) Wide-band, low background \rightarrow Hard X-ray information with high S/N

Wavelength (Å)

Evans+ (2009)

Radiative Transfer

Interpretation of such high-quality data requires more precise astrophysical models. We have to solve a problem of radiative transfer.

Optically thin

easy

Reprocessing of X-ray photons

 $\tau \sim 1$

It is necessary to treat

discrete processes of photons,

competing processes,

multiple interactions.
Moreover, it depends on geometry.

Optically thick

 $\tau \gg 1$

Statistical approach continuous approximation diffusion approximation →differential equation

Black body if very thick e.g. standard accretion disk

optical thickness

Monte Carlo approach

Monte Carlo Simulation

Tracking photons by calculating their propagation and interactions based on Monte Carlo method

Process of one event: 1) generate a photon, record initial conditions 2) calculate the next interaction point 3) invoke the interaction, reprocess photons 4) repeat 2-3 5) record the last interaction information if a photon escapes from the system.

A MC simulation generates a list of events containing a response of the system. Convolution of this event list with the initial conditions produces the final spectrum/image. (similar to methods of Green's function) Odaka+ (2011)

The MONACO Framework

MC Simulation Geometry building (Geant4) Particle tracking (Geant4) Physical processes (original)

Output event list

Analysis (Convolution) Observation (Imaging/spectroscopy)

Observed spectra/Images

Physical conditions of matter

 Initial conditions of photons for simulation

- Initial conditions of photons (Source function)
- Observer's direction
- Time of observation
- Distance of the source
- Building geometry and tracking particles: Geant4 toolkit library
 - ← Sophisticated treatment of complicated geometry (e.g. radiation detector simulation)
- Physical processes: original implementation

← Existing codes have been inadequate to treat binding effects of atoms and gas motion (Doppler effect of thermal/bulk/micro-turbulent motions). We also extend the Geant4 geometry builder for astrophysical objects.

Physical Processes

MONACO has extensible structure; you can (easily) add new physical processes. We have implemented:

State of matter	Processes	Applications
Hot plasma	(Inverse) Compton scattering	Accretion flows Hot coronae around compact objects
Photoionized plasma	Photoionization Photoexciation	Stellar winds in X-ray binaries AGN outflows
Neutral matter	Photoabsorption Scattering by bound electrons	X-ray reflection nebulae (molecular clouds) AGN tori

Comptonization in Accretion Flow

Comptonized Spectrum

Pure thermal Comptonization

- ✓ Spherical cloud of different Thomson depths
- ✓ Temperature: 6.4 keV
- ✓ Seed: monochromatic 0.64 keV
- ✓ For large τ, the spectrum agrees with the theoretical spectrum of saturated Comptonization.

Accretion Column Model

- ✓ Assuming Vela X-1's column
- ✓ Temperature: 6 keV
- ✓ Seed: thermal bremsstrahlung
- ✓ Column radius: 200 m
- ✓ Magnetic field effect included approximately
- ✓ Successfully generated a power law with a quasi-exponential cutoff.

Odaka et al. in prep. & Suzaku conference poster in July at Stanford.

Photoionized Plasma

Stellar wind in an HMXB is the best laboratory to study photoionized plasmas.

 Radiation from a photoionized plasma can be regarded as reprocessed emissions from illuminated matter.
MC simulation is suitable.

Our MC simulation successfully reproduced Vela X-1 spectrum for lines of H, He-like ions (Watanabe+ 2006).

We recently extended this code to L-shell ions (Li-, Be-...like).

First attempt to reproduce Si-K complex of Vela X-1 spectrum obtained by Chandra. Model parameters are not optimized yet.

Monte Carlo simulation is a powerful tool to simulate effects of turbulence on a line spectrum.

X-ray Reflection Nebula

 Giant molecular cloud Sgr B2 has been reflecting a past outburst of SMBH Sgr A*, displaying strong Fe fluorescence at 6.4 keV.
It shows strong time variability over a few year scale.

Koyama+ (2008)

- Such objects are good probes of molecular clouds themselves and the black hole activity.
- We have to consider multiple scatterings and structure of the cloud. → Monte Carlo simulation

Diagnostics of Molecular Clouds

Parameters:

line-of-sight position of the cloud

Odaka+ (2011)

• mass

- density profile
- chemical composition

Imaging results show very different between the iron line and hard X-rays.

ASTRO-H Observatory

Scheduled for launch in 2014

Large effective area = Good statistics

Micro-calorimeter Energy res. $\Delta E = 5 \text{ eV}$ at 6 keV Hard X-ray mirror + imager Imaging spectroscopy up to 80 keV

High S/N data obtained by ASTRO-H will open high-precision physics experiments at cosmic laboratories.

Our MC framework based on accurate treatment of X-ray radiative transfer enables evaluation of systematic errors due to astrophysical objects.

Imaging Polarimetry

Complicated Geometry

Simple model of clumpy stellar wind

Summary of MONACO

We have been developing a new calculation framework of X-ray radiation based on Monte Carlo method.

It is multi-purpose, easy to use, and extensible.

This MC framework will enable us to interpret high S/N data obtained by modern/future X-ray observatories.

We are going to prepare to open it to the public.