Early magnetic B-type stars

Lidia Oskinova Universität Potsdam X-Ray Universe 2011

Massive Stars and Stellar Winds

Initial mass $M_* > 8M_{\odot}$ Main Sequence: OB-type Fast evolution (~Myr) -> trace star formation

Hot. $T_{\rm eff} > 10\,000$ K \rightarrow high surface brightness

Photon momentum \rightarrow acceleration of matter

Radiative acceleration larger than gravitation \rightarrow supersonic STELLAR WIND

nasaimages.org

The evolution of massive stars

Stellar structure: no outer convective zone (no dynamo)

Chemically Peculiar (classical) magnetic ApBp stars

Wide range of spectral types. Dipole kG-strong magnetic fields

 σ Ori E - cartoon from D. Groote homepage

Winds \rightarrow Low Plasma- $\beta \rightarrow$

Stellar wind dynamics is dominated by B

Magnetically Confined Wind Shock (MCWS) model (Babel & Montmerle 1997ab)

- θ^1 Ori C : a story of success
- Babel & Montmerle 97; Stahl etal 96,08; Weigelt etal 99; Donati & Wade 99; Schulz etal 00, 02; Donati etal 02; Ud-Doula etal 02, 06,08,09; Naze etal 10.
- Dipole kG magnetic field oblique magnetic rotator
- Multiwavelength properties are well explained and confirmed by MHD simulations
- An accepted template of a magnetic OB star

adopted from Gagné etal 05

3

2

X (R*)

0

1

MCWS model predictions

MCWS: well defined model predictions:

- L_X/L_{bol} >> 10⁻⁷
- DEM peaking at 20 MK
- Narrow X-ray line profiles
- X-ray periodic variability
- X-ray formation at few R*

Can X-rays be used as a diagnostic tool to reveal magnetic massive stars?

adopted from Gagné etal 05

Last decade: **boom** in the detections of magnetic fields on massive stars (Donati & Landstreet 2009)

- Collect all exisiting X-ray data on early type (earlier than B2)
 B-stars. Dedicated XMM-Newton observations for three stars,
 ξ1 CMa, ζ Cas, V2052 Oph: two are detected for the first time
- The complete sample of early B-type stars with detected magnetic fields and existing X-ray observations to date.
 (Oskinova etal. 2011)
- To obtain quantitative information on stellar winds: model UV lines using state-of-the-art stellar atmosphere code PoWR.

X-ray spectra of magnetic B-stars

Example: XMM-Newton observations of ξ^1 CMa : **B**_{pol} = **5.3 kG**

• The bulk of hot gas $T_x=1$ MK (except τ Sco, σ Ori E)

• The $log(L_X/L_{bol})$ ratio in the range -5.6 ... -8.5

X-ray variability

- Magnetic configuration of τ Sco
- Strongly assymetric, not dipole
- Correlation of X-ray flux with B:
 - Wind confined models
 - * coronal loop models

Observe at different rotational phases

X-ray variability

- Magnetic configuration of τ Sco
- Strongly assymetric, not dipole
- Correlation of X-ray flux with B:
 - Wind confined models
 - * coronal loop models
- No X-ray variability

Ignace etal 2010

X-ray variability

- Magnetic configuration of τ Sco
- Strongly assymetric, not dipole
- Correlation of X-ray flux with B:
 - Wind confined models
 - * coronal loop models
- No X-ray variability

- β Cep soft spectrum, no variability, narrow lines
 (Favata etal 09)
- σ Ori E hard spectrum,
 flare (?) (Groote etal 04,
 Sanz-Forcada etal 2004)

θ¹Ori C hard spectrum,
periodic X-ray variability
(Gagne 1998, +)

Correlation with stellar parameters

 L_{x} of β Cep-type stars vs. magnitude of pulsation (upper panel) and pulsational period (lower panel)

Our sample is small (11)

- No correlation with P_{rot}
- No correlation with B
- No correlation with P_{puls}
- No tight correlation with L_{bol}

Correlation with stellar parameters

 L_{x} of β Cep-type stars vs. magnitude of pulsation (upper panel) and pulsational period (lower panel)

Stellar Wind Analysis

- PoWR NLTE stellar atmospheres
- Iron Line blanketing
- Co-moving frame RT
- Complex atomic data
- Expanding atmospheres
- Photosphere + wind
- X-Rays

Optical spectrum of ξ^1 CMa (blue) vs. PoWR model (red)

X-rays are important for correct mass-loss rate diagnostics

The effect of ionization by X-rays on CIV line The IUE spectrum of τ Sco (detail)

Blue observations Model without X-rays; with X-rays; $\log(\dot{M}) = 10^{-9.3} \text{ M}_{\odot}/\text{yr}$

X-rays are important for correct mass-loss rate diagnostics

The effect of ionization by X-rays on SiIV line The IUE spectrum of β Cep (detail)

Blue observations Model with X-rays; $\log(\dot{M}) = 10^{-9.1} \text{ M}_{\odot}/\text{yr}$

The results of the wind analysis diagnostics

- The wind velocities are low (approx. 700 km/s)
- The mass-loss rates are low $\log(\dot{M}) \sim -10$
- The radiative pressure is capable of driving the winds a factor of few stronger: "Weak Winds"
- The emission measure of hot X-ray emitting gas is much higher than the emission measure of cool gas we see in the UV: the hot plasma is very dence or has large volume
- Low- β plasma: the wind motion is dominated by **B**

Comparing with the observations diagnostics

- We know **B** strength and configuration from other groups
- We know X-rays emission ($L_{X\&M, kTX}$) from observations
- Plug it in the PoWR model, compute UV spectra, obtain stellar wind parameters
- Use **B**, \dot{M} , v_{wind} as parameters for MCWS model.
- Compare predicted L_X , kT_X , DEM with the observed.
- How well does MCWS model works? Check alternative models.

Conclusions (followed up by open questions)

Based on our comprehensive study of the complete (present) sample of massive B-stars with **B**

- MCWS model can explain observed "normal" L_x : the stellar winds are weaker than theoretically predicted by the stellar wind theory.
- MCWS doesn't seem be able to explain the DEM as obtained from the observations (too low temperatures)
- X-ray properties of magnetic B-stars are diverse: no tight L_X-L_{bol} correlation: some sources are hard some sources are soft.
- Soft and intrinsically faint X-ray stars can be magnetic.
- X-rays must be incorporated in stellar spectral analysis to obtain the correct ionization structure and mass-loss rate.

Open Questions

- Why B-stars have weak winds?
- Origin, incidence, and structure of **B**?
- How X-rays are generated: MCWS model is not be a unique possibility ?
- Many further questions....

Thank you!