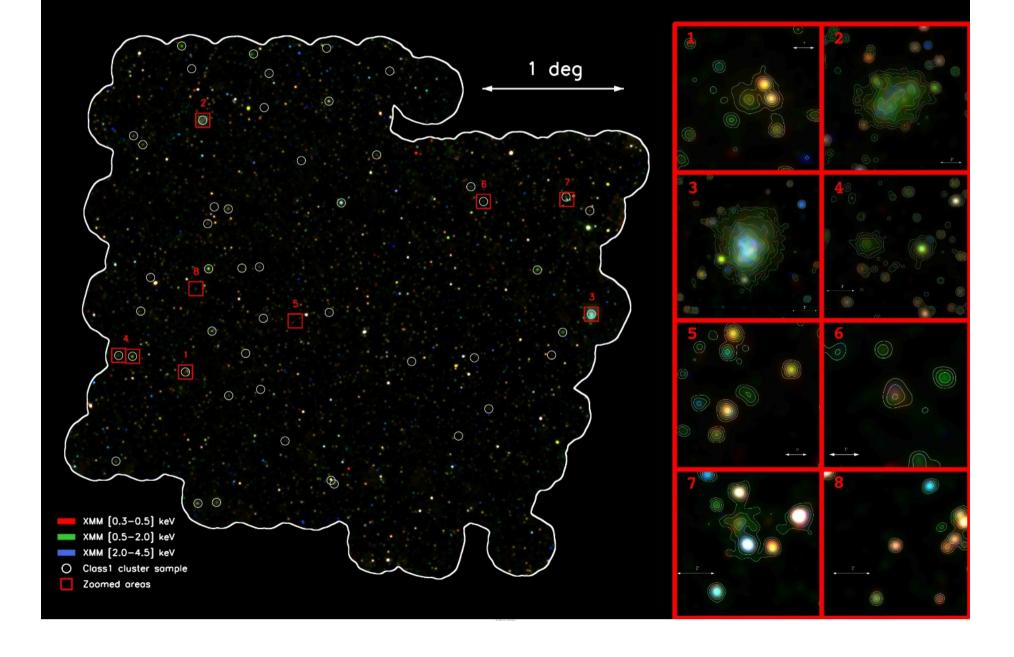
XXL or The Dark Energy, now

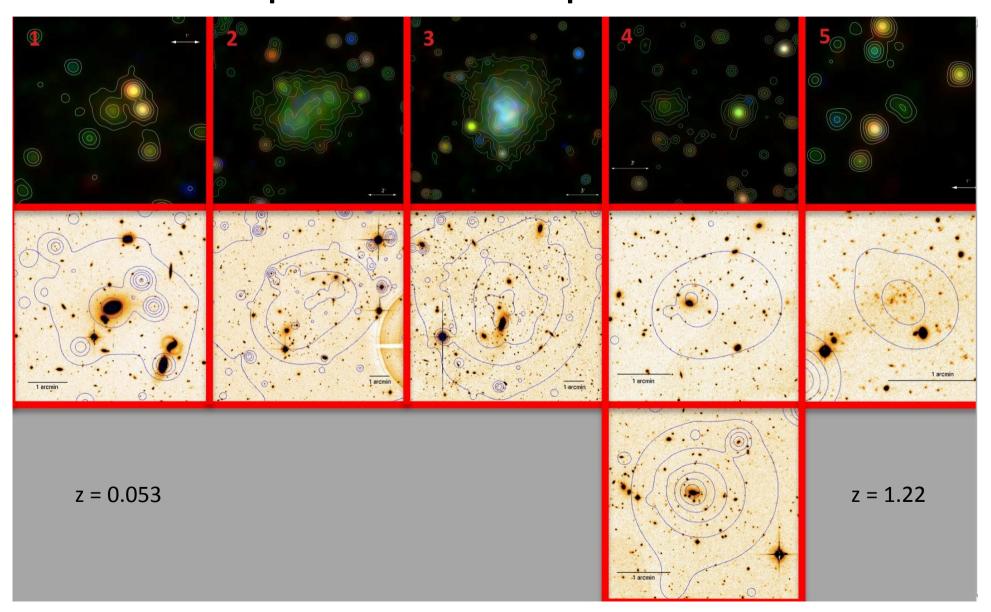
The X-ray universe, Berlin,
June 28, 2011

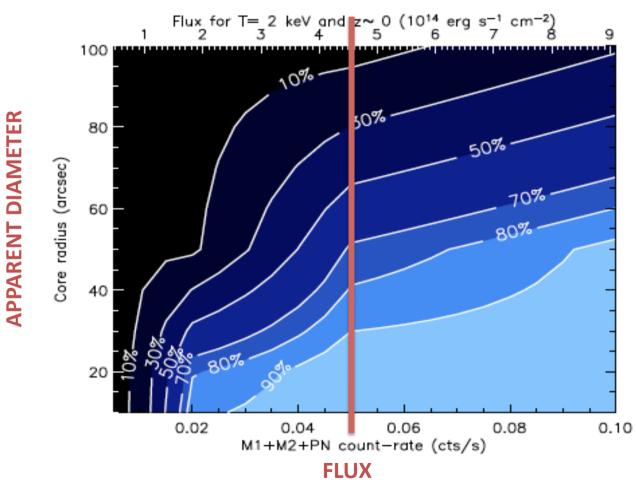
M. Pierre


The ultimate XMM extragalactic survey

- History
- Dark energy and clusters of galaxies
- XXL: The largest XMM programme
- Main science goals
- The associated surveys and the legacy aspect
- How to contribute?

BRIEF HISTORY


The XMM-LSS survey


XMM-LSS 2000-2010

- Started on the guaranteed time of Liège, Milan & Saclay
- Several time allocations, including a LP in 2005
- 11 deg² at 10-40 ks, on the CFHTLS-W1
- Development of a sophisticated X-ray pipeline (Pacaud et al, 2006)
- Cluster data-base (X-ray, multi-λ, follow-up management)
- Tens of VLT hours for the cluster spectroscopic follow-up

XMM-LSS clusters and their optical counterpart in the CFHTLS

The cluster selection funtcion

Important results from XMM-LSS

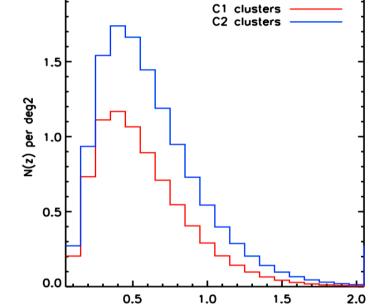
- For the first time, a very well determined cluster selection function (≠ flux limit)
- The determination of the cluster scaling laws

```
flux, R, z => M
observables => theory => cosmological models
strongly depens on the survey selection effects
```

Critical for cosmology

More than 30 refereed publications and 7 theses

DARK ERNERGY with CLUSTERS


The effect of DE on clusters

- Geometrical effect
 Volume, D_I
- Gravitational effect
 Growth of the density perturbations

The cosmological quantities

dn/dz
 for a given selection function

C1: 6 clusters /deg² ~ 1/deg² à z>1 C2: 12 clusters /deg²

- ξ: 3D correlation function
- \rightarrow ξ increases the constraints by a factor of \sim 2

Predictions for XXL = 50 deg²

Table 7. Cosmological constraints. Survey configuration A2 - 50 deg² 1/4 depth (10 ks XMM exposures)

1- σ errors on w_0 / w_a

XXL

Selection	Redshift range	dn/dz + Planck	$dn/dz + \xi + Planck$
C1 (pessimistic)	0 < z < 1	2.77 / 5.98	0.97 / 3.08
C2 (optimistic)	0 < z < 2	1.14 / 2.44	0.55 / 1.70

Table 8. Cosmological constraints from clusters following the DETF survey designs

1- σ errors on w_0 / w_a

Ref.
Dark Energy Task Force
clusters

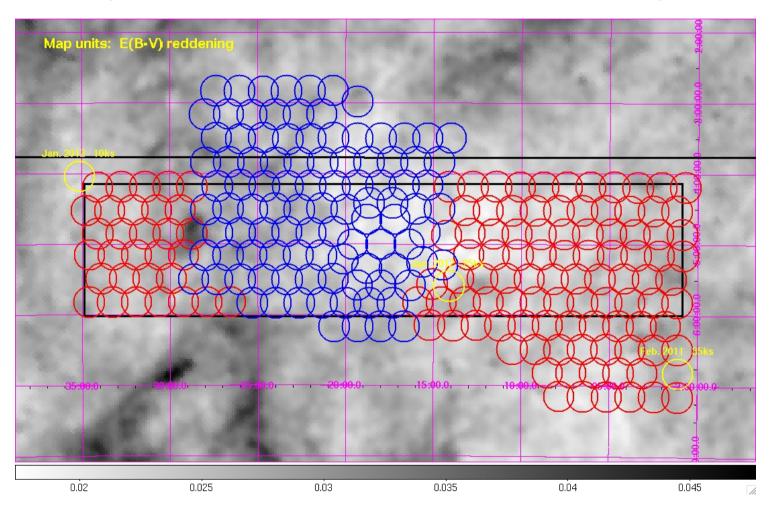
Stage	Pessimistic	Optimistic
III	0.70 / 2.11	0.26 / 0.77
IV	0.73 / 2.18	0.24 / 0.73

The DE equation of state from clusters

- Most realistic DE predictions with clusters to date:
 - well validated selection function
 - realistic errors on the mass (≈ nb(photons))

We can probably get even better constraints:

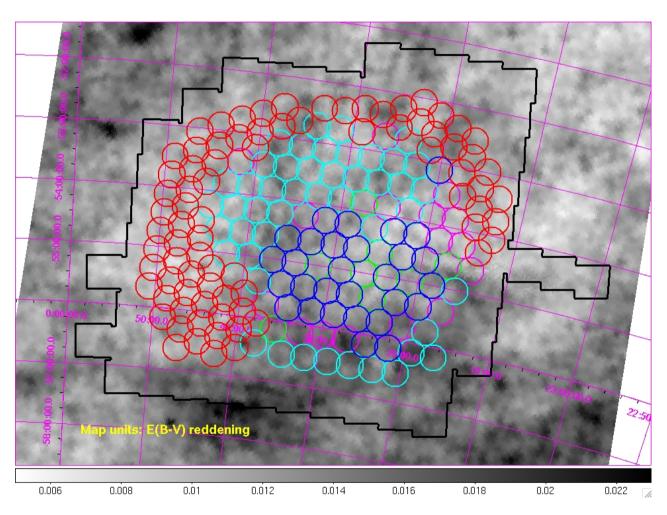
Forthcoming paper on dn/dM/dz (Pacaud et al in prep.)


THE XXL SURVEY

XXL: Overview

- 2 areas of 25 deg² each, paved with 10 ks XMM observations – Mosaic mode
 - 3Ms allocated in December 2010 (May 2011 April 2013)
 - Some 3Ms of already existing data
- Main science goal: the equation of state of the dark energy from clusters of galaxies
- Hot topics for AGNs and clusters and XRB

25 deg² in CFHTLS-W1 2h23 -5d00


(extension of the XMM-LSS field)

In red: the new observations (126)

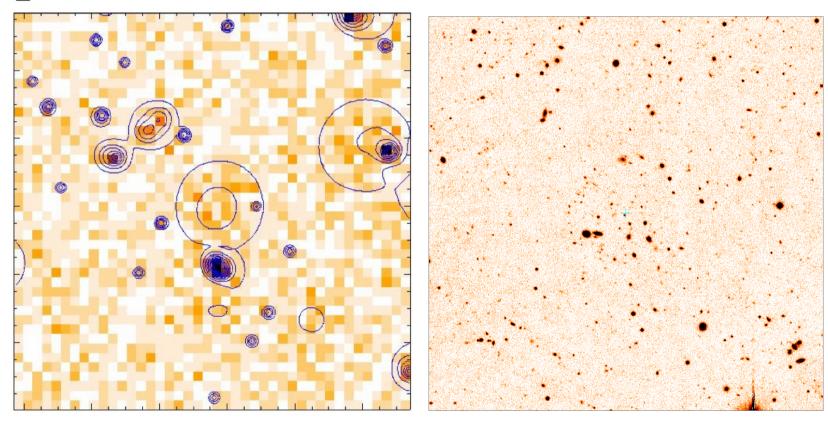
 $\Delta \alpha = \Delta \delta = 20'$ everywhere

25 deg² in BCS 23h30 -55d00 (extension of the XMM-BCS field)

In red: the new observations (80)

 $\Delta \alpha = \Delta \delta = 20'$ ($\Delta \alpha = \Delta \delta = 23'$ in the initial central survey)

MAIN SCIENCE GOALS


Cluster 'hot topics'

Specific to XXL

- The DE equation of state
- The group population at z~0.5
- Mass measurements (X,optical, lensing, IR, S-Z)
- Census of the 1<z<2 clusters
 - volume : 0.6 Gpc³
 - compared to the SDSS within 0<z<0.3 : 1.4 Gpc³

A candidate at $z \sim 1.5$

 ${\bf ID_1762}$

Cosmological modelling with XXL

Fit at the same time:

- The selection effects
- The cluster scaling laws
- The cosmology

→ self-consistent analysis of the cluster data set

AGN 'hot topics'

Specific to XXL

More than 200 X-ray AGNs/deg2

- Large Scale Structure
- Distant / Exotic AGNs
- The statistics of lensed QSOs

CATALOGUES

In the X-ray band:

450 XMM pointings 500 clusters 10 000 sources

Associated surveys

Equatorial field (LSS)

– CFHTLS, HSC optical

- ACT SZ

UKIDSSSpizterHerschelNIR 9 deg2NIR 9 deg2NIR 9 deg2

– eRositaX

- GAMA spectroscopy and multi- λ z<0.5

VIPERS spectroscopy (VIMOS@VLT) 14 deg2

Southern field (BCS)

DES optical

SpitzerMIR

ACT, SPTSZ

VISTANIR

– eRositaX

... and many others in preparation (Chandra, EVLA, Herschel, ASKAP, LOFAR....)

... Euclid?

Legacy: The Utlimate XMM Extraglactic Survey

X-ray source catalogues

ClustersSaclay

Point sourcesMilan

• Multi- λ catalogues Milan

- Photo-z
- Special efforts on:
 - Requirements for band merging
 - Photometric uniformity
- Spectroscopy
 Marseille

WORKING ORGANISATION

Project status

- Kick-off meeting 2-6 May 2011
 (45 participants, 60% not XMM-LSS)
- Work organisation
 - Steering Committee, MoU
 - Working Groups: observations et science
- ~70 people have registered to the collaboration to date

The Working Groups

- X-ray processing
- Catalogues
- Photo-z
- Theory
- Simulations
- Clusters

Cosmology

Mass measurements and scaling relations

Distant clusters

The group population at z~0.5

Baryon physics

Physics and properties of cluster galaxies

S-Z surveys

Spectroscopic follow-up

Core ID programme

z<1 clusters z>1 clusters

Clusters (continued)

Validation of the cluster redshifts for the catalogue

Further follow-up

Velocity dispersions Galaxy properties

AGNs

LSS with AGNs

Extreme AGNs

Lensed AGNs

AGN properties

SEDs

LF, counts and high-z population

Compton thick Agns

Star formation vs AGNs

Spectroscopic follow-up

Multi-wl follow-up

Optical

Radio

NIR

MIR

FIR

Data access and catalogues

The raw XMM data will be immediately public

The XMM-LSS pipeline takes about 10 min per pointing

The observations will be processed on a weekly basis

Data access and catalogues

- At the end of each visibility window
 - The general catalogue (X-ray sources +optical ID) will be available in the Milano DB
 - The cluster catalogue (C1+C2 clusters, X-ray + optical images) will be available in the Saclay-Lyon DB
- The catalogues will be released to the consortium after each visibility window
 - to do science
 - to check for any inconsistency, feature or bug in the catalogues
- AIM: public catalogue releases to take place one year after the internal consortium releases

Working environment

- The project is open to any interested scientist from the international community
- Activities are coordinated by dedicated data and science WGs
- Free access to all data sets for the consortium members
- Lists of science topics and provisional papers updated once a year
- Each individual has to sign the MoU
- The steering committee consists of one representative per country (Chair M.P.)

Join the XXL collaboration?

- Read the MoU
- Propose a contribution
 - Data processing
 - Science
 - Multi- λ follow-up
 - Multi- λ catalogue
- Sign the MoU
 - Join the WGs
 - Access to the consortium wiki

Summary 1

- XXL is the largest XMM programme
- 10 years after the XMM launch, this is **the right time** to undertake such a survey:
 - excellent knowledge of the instrument
 - lots of experience with data processing and interpretation
 - lots of realistic and exciting science ideas!
- There is plenty of work for years... to make everybody more than happy! We are embarking on a 5-10 years project
- Favor post-docs to take on responsibility

Summary 2

 XXL will provide competitive constraints on the DE very soon

Key contribution to the XMM Legacy

→ Minimal investments en proportion

Collaborators are welcome!

The END