Nova M31N 2007-12b: supersoft X-rays reveal an intermediate polar?

W. Pietsch, M. Henze, F. Haberl (MPE), M. Hernanz (CSIC-IEEC), G. Sala (UPC-IEEC), D.H. Hartmann (Clemson), M. Della Valle (ESO, INAF-Napoli, ICRA)

A&A 531, A22 (2011)

M31 optical nova/SSS observations for many novae simultaneously

• Optical

- Detection
- Light curves
- Spectral classification
- X-ray
 - Light curves (start and end of SSS phase)
 - Spectra (temperature, absorption, luminosity)
- Results
 - Mass of ejected matter
 - Burned mass
 - White dwarf masses

Some recurrent novae precursor of type la Supernovae?

Modeling of nova SSS state

Fig. 3.—Turn-on (circles) and turnoff (triangles) times of supersoft X-ray are plotted against the WD mass. X-ray turn-on corresponds to the epoch when hydrogen shell-burning ends. A total of 72 cases are plotted for six different chemical compositions: (a) case CO 2 in Table 2, a large square indicates the epoch of supersoft X-ray turnoff for GQ Mus 1983 (Shanley et al. 1995); (b) case CO 3; (c) case CO 4; (d) case Ne 2, two large squares indicate the epochs of supersoft X-ray turn-on and turnoff for V1974 Cyg 1992 (Krautter et al. 1996); (e) case Ne 3; (f) solar composition. [See the electronic edition of the Supplement for a color version of this figure.]

Ejected mass Burned mass WD mass Chem. Comp.

e.g. Sala & Hernanz 2005 A&A 439, 1061

Hachisu & Kato 2006 ApJS 167, 59

Observations of optical novae in M31

- >50 novae per year in M31
- More than half of the novae in bulge area
- Several candidates for recurrent novae
- Monitoring of bulge area gives light curves of many novae simultaneously in one XMM-Newton/Chandra field (Galactic novae can only be monitored one by one, i.e. observation time used much less efficient)
- Only X-ray observations with good low energy sensitivity can detect SSS efficiently (EPIC pn, HRC-I, ACIS-S)
- Archival X-ray observations have un-regular sampling
- Dedicated XMM-Newton/Chandra proposals accepted
 - AO5: eight observations with 1.5 month separation distributed over one year
 - AO6 AO10: 5x ten observations with 10 day separation distributed over about 3 months + several additional Chandra GTO observations
- Detection of novae in the optical and classification of optical spectra essential for interpretation of X-ray data
- Statistical analysis: talk by Martin Henze before Coffee break

M31 optical nova catalog I

🜈 Optical Novae in M 31 - Microsoft Int	ernet Explorer provided by Tiscali
🕞 🕞 👻 📴 http://www.mpe.mpg.de/~m	31novae/opt/m31/index.php 🛛 🖌 🚱 🗙 Google
• •	
😭 🏟 🥫 Optical Novae in M 31	and the second s
MPE	Max-Planck-Institut für extraterrestrische Physik
	Optical Novae in M 31
Deutsche Version	MPE Novae in Galaxies Catalogues M31
Novae in Galaxies Catalogues	Optical Novae in M 31
M31 M33 M32 NGC205 SSS in M31 Search	We created a catalogue of all historical optical novae detected in M 31. During this work we noticed that a homogeneous naming of all novae in M 31 is missing. After discussions with Nicolai Samus, who's group provided naming for some novae in the "General Catalogue of Variable Stars" in the CDS/ADC Collection of Electronic Catalogues, 2250 (2004) and Daniel Green from the Central Bureau for Astronomical Telegrams CBAT of

M31 optical nova catalog II

name M31N	RA DEC	error	Pos_ref	JD	JD_ref	ID_out	ID_ref	MAG	Filt	M_ref	T2_1	T2_2	T2_ref	alt. name
2009-02b	00:42:27.77 +41:13:42.4	0.3 0.3	<u>364</u>	2454882.63	<u>364</u>			18.5	R	<u>364</u>				
2009-02a	00 : 43 : 43.81 + 41 : 36 : 38.8	1.0 1.0	<u>360</u>	2454868.93	<u>360</u>	a	<u>360</u>	16.8	w	<u>360</u>				
2009-01a	00 : 44 : 44.03 + 41 : 23 : 28.3	0.5 0.5	<u>356</u>	2454859.92	<u>356</u>			18.5	w	<u>356</u>				
2008-12b	00:43:04.85 +41:17:51.6	0.3 0.3	<u>353</u>	2454830.21	<u>354</u>	a	<u>353</u>	16.8	w	<u>353</u>				P60-M31-081230
2008-12a	00:45:28.80 +41:54:10.1	0.5 0.5	<u>352</u>	2454826.98	<u>352</u>			18.7	w	<u>352</u>				
2008-11c	00 : 43 : 18.62 + 42 : 10 : 14.2	0.5 0.1	<u>342</u>	2454797.00	342			18.2	w	342				

alt. names	alt. ref.	spectral ref.	x-ray ref.	finding charts	spectra	com
	<u>365</u> , <u>366</u> , , ,	,,	,,	SuperLOTIS , LGS		rec. cand. 99.44y M31N1909-09b (367)
	<u>361</u> ,,,,	<u>362</u> ,,	,,	<u>Nishiyama</u> , <u>LGS</u>		FeII (<u>362</u>)
	,,,,	<u>359</u> ,,	,,	<u>Nishiyama</u> , <u>LGS</u>		FeII, slow nova? (<u>359</u>)
)	<u>355</u> ,,,,	<u>354</u> ,,	,,	<u>Nishiyama</u> , <u>LGS</u>		FeII (<u>354</u>)
	,,,,	,,	,,	<u>Nishiyama</u> , <u>LGS</u>		
	<u>345</u> , , , ,	<u>343</u> , <u>344</u> ,	,,	<u>Itagaki</u> , <u>DSS2</u>		not a nova, SN z=0.07 (<u>343</u> , <u>344</u>)

M 31 monitoring

Optical novae over-plotted

M 31 monitoring

Optical novae over-plotted

X-ray novae over-plotted

M 31 monitoring

Optical novae over-plotted

X-ray novae over-plotted

M31N 2007-12b

M31N2007-12b: optical image

Local group survey

SuperLOTIS

He/N nova M31N 2007-12b

- Optical detection 2007 Dec 9.5 (16.1 w) at Miyaki-cho at Wendelstein and
 Nishiyama & Kabashima Lee et al. ATel 1324 Kamil Hornoch
- Optical Spectrum at HET: Hα 4500 km/s FWHM, He/N type
 Shafter ATel 1332
- X-ray Swift till 2007 Dec 30 out, 2008 Jan 13 bright Kong & Di Stefano ATel 1360

2008 May 26 out recurrent nova? 1.3 M_{sun} white dwarf

Bode et al. 2009, ApJ 705, 1056

• Our monitoring: XMM-Newton starting 2008 Jan 8 bright Start of SSS within 30 days, duration, pulsations?

M31N 2007-12b: UV observations

Table 2. XMM-Newton OM and Swift UVOT observations of the M31N 2007-12b field around and after the optical nova outburst

Observatory	Instr.	ObsID	Obs. start	Filters	Exposure	Δt^*	Brightness**
			(UT)		(s)	(d)	(mag)
Swift	UVOT	00031027002	2008-12-02.64	U	1002	-6	> 19.8
Swift	UVOT	00031027003	2008-12-03.25	UVW1	375	-6	> 19.3
				UVM2	399	-6	> 19.5
				UVW2	399	-6	> 19.6
Swift	UVOT	00031027004	2008-12-16.78	UVM2	3853	8	17.82 ± 0.04
XMM-Newton	OM	0505720201	2007-12-29.57	UVW1	4800	21	19.92 ± 0.03
Swift	UVOT	00031027005	2008-12-30.02	U	3977	21	19.77 ± 0.18
XMM-Newton	OM	0505720301	2008-01-08.29	UVW1	4720	30	20.27 ± 0.16
Swift	UVOT	00031027006	2008-01-13.74	UVM2	841	36	> 19.9
XMM-Newton	OM	0505720401	2008-01-18.63	UVW1	3500	41	20.62 ± 0.05
XMM-Newton	OM	0505720501	2008-01-27.94	UVW1	3300	50	> 20.5
XMM-Newton	OM	0505720601	2008-02-07.21	UVW1	3680	60	> 20.5

Notes and references:

* : time after optical outburst (assumed 2007 December 9.0 UT)

** : Swift magnitudes in UVOT photometric system (Poole et al. 2008), for XMM-Newton OM instrumental magnitudes

M31N 2007-12b: X-ray observations

Table 1. XMM-Newton EPIC pn, Chandra HRC-I and Swift XRT observations of the M31N 2007-12b field around and after the optical nova outburst

Observatory	Instr.	ObsID	Obs. start	Exposure	Δt^*	Count rate**	L _X ***.**	Comment
			(UT)	(ks)	(d)	(ct ks ⁻¹)	$(10^{37} \text{ erg s}^{-1})$	
Chandra	HRC-I	8529	2007-12-07.57	19.1	<mark>-1</mark>	< 1.3	< 1.2	off
Swift	XRT	00031027004	2008-12-16.78	3.9	8	< 3.9	< 9.2	off
Chandra	HRC-I	8530	2007-12-17.49	20.2	8	< 0.9	< 0.8	off
XMM-Newton	EPIC pn	0505720201	2007-12-29.57	22.3	21	1.0 ± 0.4	0.11	faint
Swift	XRT	00031027005	2008-12-30.02	4.0	21	< 3.4	< 8.0	off or faint
XMM-Newton	EPIC pn	0505720301	2008-01-08.29	22.1	30	260 ± 3	77	bright, dip
Swift	XRT	00031027006	2008-01-13.74	4.0	36	15 ± 2	35	bright
XMM-Newton	EPIC pn	0505720401	2008-01-18.63	18.2	41	395 ± 5	61	bright, dip
XMM-Newton	EPIC pn	0505720501	2008-01-27.94	17.3	50	479 ± 5	76	bright, dip
XMM-Newton	EPIC pn	0505720601	2008-02-07.21	17.4	60	291 ± 4	37	bright
Swift	XRT	00037719001	2008-05-26.71	4.9	170	< 2.3	< 5.4	off
XMM-Newton	EPIC pn	0560180101	2008-07-18.26	17.4	222	< 1.5	< 0.1	off

Notes and references:

* : time after optical outburst (assumed 2007 December 9.0 UT)

** : upper limits are 3σ

***: 0.15–1.0 keV absorption corrected luminosity assuming an absorbed black body spectrum as determined in the spectral fit (see Table 5). For observations where spectral fitting was not possible we assumed a black body spectrum with $N_{\rm H}$ = 1.0×10²¹ cm⁻² and a temperature

kT = 60 eV. We use a distance of M 31 of 780 kpc (Holland 1998; Stanek & Garnavich 1998) throughout the paper

M31N 2007-12b EPIC pn images

Dec 29Jan 8Jan 18Jan 28Feb 7Jul 18200720082008200820082008

XMM-Newton EPIC pn 200-1000 eV

M31N 2007-12b: light curve

M31N 2007-12b: X-ray spectrum

XMM-Newton EPIC pn, 2008 Jan 28

M31N 2007-12b: X-ray spectrum

Table 5. Bright state XMM-Newton EPIC pn spectral best fit parameters and derived parameters for M31N 2007-12b using black body and WD atmosphere models with halo and solar element abundances (see text for details).

ObsID	tint	Ratea	Sp.b	$N_{\rm H}^c$	kT	v	χ^2/ν	L_x^d	Lboi	L_{bol}/L_{\odot}	Rf
	(ks)			$(10^{21} \text{ cm}^{-2})$	(eV)			(10 ³⁸ erg s ⁻¹)		(104)	(10 ⁹ cm)
0505720301	22.08	260±3	BB	1.33+0.15	57.7+2.2	78	1.12	7.7	11.0	28.8	2.78
			WD H	0.70+0.08	61.0+03	78	1.36	1.9	2.3	5.9	1.12
			WD S	0.61+0.06	69.4+0.2	78	1.28	1.6	1.8	4.8	0.78
0505720401	17.94	395±5	BB	1.50+0.19	76.2+2.4	96	1.63	6.1	8.4	21.9	1.31
			WD H	0.85+0.07	70.0+0.3	96	1.47	2.4	2.7	7.2	0.94
			WD S	0.95+0.14	75.1+1.6	96	1.29	2.6	3.0	7.7	0.85
0505720501	16.86	479±5	BB	1.81+0.21	81.1+24	112	2.68	7.6	10.2	26.6	1.27
			WD H	0.83+0.06	75.6+13	112	1.06	2.4	2.7	7.0	0.80
			WD S	0.86+0.10	80.1+0.8	112	0.98	2.4	2.7	6.9	0.71
0505720601	17.42	291±4	BB	1.36+0.21	78.4+2.8	71	1.76	3.7	5.0	13.1	1.06
			WD H	0.77+0.09	70.9+0.5	71	0.93	1.6	1.8	4.7	0.75
			WD S	0.78+0.18	77.8+0.4	71	0.89	1.6	1.7	4.6	0.61

Notes and references:

^a: Net count rate in 10⁻³ ct s⁻¹ as given in XSPEC (0.15–1 keV)

^b: Model spectra. BB: black body, WD H and WD S: NLTE WD atmosphere assuming halo or solar abundances, respectively (see text)

^c: Absorption with Galactic metal abundances (Wilms et al. 2000)

d: un-absorbed X-ray luminosity (0.15-1 keV)

e: bolometric luminosity

f: WD radii, for WD atmosphere models calculated as for BB

BB luminosities significantly above Eddington limit for WD, NLTE atm. more realistic

M31N 2007-12b: Pulsations, dips

1110 s periodWD rotation"dips" in 3 obs.4.8 or 9.8 hbinary orbit?

CV with massiv magnetic WD "Intermediate polar?"

Similar to 865 s pulsating SSS detected with XMM-Newton in June 2000 (no nova counterpart known) Osborne et al. 2001, A&A 378, 800

M31N 2007-12b: 1110 s pulsations

- Period constant between observations within errors
- Pulsed fraction ~20% (0.15-1 keV)
- No change in sub-bands (0.15-0.4, 0.4-1 keV)

M31N 2007-12b: system and outburst parameters

Sala & Hernanz 2005, A&A439, 1061

M31N 2007-12b: system and outburst parameters

- SSS start 21 30 d, end 60 120d after outburst nova with one of the shortest SSS states known
- Nova envelope model with <50% mixing between solar-like accreted material and O/Ne degenerate core
- White dwarf mass 1.2 M_{sun}
- Ejected mass 2.0 x 10⁻⁶ M_{sun}
- Burned mass $2-6 \times 10^{-7} M_{sun}$
- White dwarf rotation 1110 s
 - Indication of inhomogeneous brightness distribution over surface of WD
 - Why already visible during SSS phase?
 - Accretion already restarted?
- Intermediate polar?
 - 4.9 h or 9.8 h orbital period?
 - Radius of emission region indicates magnetic WD
- Recurrent nova?
 - SN la progenitor?