First dedicated observations of the isolated neutron star in the Carina Nebula

Adriana Mancini Pires^{1,2}

C. Motch³, R. Turolla⁴, A. Treves⁵, A. Schwope¹, S. B. Popov⁶, M. Pilia⁵

¹Leibniz-Institut für Astrophysik Potsdam (AIP), Germany ²IAG-USP, Brazil ³Strasbourg, France ⁴Padova, Italy ⁵Insubria, Italy ⁶Sternberg, Russia

30th June 2011

Outline

- Scientific case
- Peculiar groups of isolated neutron stars

XMM J1046: a new M7?

- Archival X-ray observations
- AO9 observations: goals and expectations

Results

- Timing analysis
- Spectral analysis

Summary and outlook

"Peculiar" isolated neutron stars

Discoveries in X-rays/radio (over the last decade): peculiar INSs that changed the standard picture of pulsar evolution

- XDINS a.k.a. "The Magnificent Seven"
- Magnetar candidates: AXPs and SGRs

- Rotating radio transients (RRATs)
- Central compact objects in SNRs (CCOs)

Still very few compared to the main radio pulsar population but very important:

- investigation of individual sources: physics at extreme g, B
- relations between groups: neutron star phenomenology
- finding missing links: comprehensive picture can be aimed for

Radio pulsars:

•
$$B \sim 10^{12} \, {
m G}$$

When detected at high energies:

- young objects: dominated by magnetospheric activity
- middle-aged / old pulsars may show: cooling surface, hot polar caps, remnant magnetospheric emission

•
$$L_X \ll \dot{E}$$
 (spin-down)

XDINS:

- local group
 - $N_{\rm H} \sim {\rm few} \ 10^{20} \, {\rm cm}^{-2}$
 - *d* < 1 kpc
- cooling, $kT \sim 40 100 \,\mathrm{eV}$
- middle-aged, $10^5 10^6$ yr
- radio-quiet

Relative to radio PSRs they rotate slower ($P \sim 3 - 10 \, s$)...

... and have higher inferred magnetic fields $(B \sim 10^{13} - 10^{14} \text{ G})$

(somewhat intermediate between normal radio pulsars and magnetars)

- spectra purely thermal, very soft, low absorbed
- BB-like, usually with broad absorption features
- L_X ≳ Ė; no X-ray hard (non-thermal) component
- constant X-ray flux and spectral properties (usually)

Why so many similar INSs in the solar vicinity? How numerous are they in the Galaxy?

XMM J1046: a younger and more distant XDINS?

Detected in many occasions in the last ten years by XMM-Newton and Chandra (Pires et al. 2009)

Image courtesy of Rosemary Willatt (ESAC) and ESA

- FOV of η Car
- soft BB; constant flux
- $kT = 117 \pm 14 \,\mathrm{eV}$
- $N_{\rm H} = (3.5 \pm 1.1) \times 10^{21} \, {\rm cm}^{-2}$
- no counterparts (radio, m_V > 27)
- no pulsations p_f > 30% (3σ, P = 0.15 - 100 s)
- possibly younger and closer to birthplace than the M7

Problems:

- large off-axis angles $\theta \sim 9'$
- short $t_{\rm exp} \lesssim 15 \, \rm ks$
- near/in CCD gap

Pires et al. (AIP, IAG-USP)

The INS in the Carina Nebula

X-ray Universe, 30/06/2011 8 / 18

First dedicated X-ray observations of XMM J1046

Immediate goals:

- Determine the spin period
- Better spectral energy distribution
- Estimate B from absorption lines

Configuration and expectations:

- 90 ks with EPIC in small window (SW) mode and thin filter
- $p_f \gtrsim 15\%$, $E \gtrsim 0.5 \text{ keV}$ (conservative)

Sensitivity to detect pulsations strongly dependent on source brightness

Results: timing analysis

• To find pulsations: Z_n^2 test; extensive searches varying the energy band and size of extraction region

Results: timing analysis

- To find pulsations: Z_n^2 test; extensive searches varying the energy band and size of extraction region
- 2 No pulsations in the P = 0.6 10000 s (EPIC analysed together)

• *p_f* > 11% (3*σ*)

Results: timing analysis

- To find pulsations: Z²_n test; extensive searches varying the energy band and size of extraction region
- 2 No pulsations in the P = 0.6 10000 s (EPIC analysed together)

• $p_f > 11\% (3\sigma)$

- In the fast range P = 0.011 1 s (pn only):
 - evidence at $P_{\star} = 18.6 \,\mathrm{ms}$ (marginal but non-negligible! 3.8σ)
 - pulsed fraction: $p_f = 13.5\%$
 - peak at P_{*} always highest in search when E ≮ 0.35 keV (noisy read-out photons discarded)
 - $Z_1^2(P_*)$ power (significance) sensitive to the choice of:
 - energy band
 - extraction radii
 - consequence of varying S/N ratio as a function of energy

Not an instrumental effect!

Same analysis conducted on other observations in SW mode shows no peaks at P*

Pires et al. (AIP, IAG-USP)

Tentative period at $P \sim 19 \,\mathrm{ms} \,(3.8\sigma)$

Results of Z_1^2 analysis in the "fast" regime P = 0.011 - 1 s

pn only, $\Delta\nu=87.72\,\text{Hz}$ and $\mathcal{N}=5.55\times10^6$ independent trials

Results: spectral analysis

- Better constrained parameters, consistent with Pires'09
- e However, single component (absorbed) model hardly satisfactory
 - best fits: <code>bbody</code> and <code>nsa</code> with $\chi^2_{\nu} \sim$ 1.5 (null hyp. prob. < 1%)
 - pow: $\Gamma \sim$ 9 too steep, considerably worse than thermal $(\chi^2_\nu \sim 2.4)$
 - residuals always around energies 0.6-0.7 keV and 1.3-1.4 keV
- Better results when adding complexity (i.e. more components)
 - good fits when adding Gaussian absorption (under investigation)
 - tested bb+bb, bb-gauss, bb+pl,...
 - double BB: soft component with very high R_∞
 - upper limits on PL hard tails: < 1 2% (3 σ) to F_X

Spectral analysis Results

Single-component fit: structured residuals!

- *N*_H = $2.59^{+0.14}_{-0.21} \times 10^{21} \,\mathrm{cm}^{-2}$
- $kT_{\infty} = 136.1^{+4}_{-2.5} \text{ eV}$
- $F_{\rm X} = 7.0^{+0.7}_{-0.9} \times$ 10⁻¹³ erg s⁻¹ cm⁻² (0.1-12 keV)
- $\chi^2_{\mu} \sim 1.5$ (< 1% for 63 dof)
- excess softest bins
- residuals at 0.6-0.7 keV and 1.3-1.4 keV

Results Spectral analysis

Adding complexity: improves agreement data-model

bbody-gauss

fixed N_H

- $kT_{\infty} = 129.4^{+1.9}_{-1.7} \, \mathrm{eV}$
- $F_{\rm X} = 7.9 \times 10^{-13} \, {\rm erg \, s^{-1} \, cm^{-2}}$ (0.1-12 keV)
- E = 0.589^{+0.017}_{-0.015} keV
- σ = 0.1 keV
- EW = -77 eV
- $\chi^2_{
 u} \sim 1.1$ (32% for 62 dof)
- O edge / O overab.(LOS)
- Presiduals 1.3 keV remain

Results Spectral analysis

Adding complexity: improves agreement data-model

bbody-2*gauss

fixed N_H

•
$$kT_{\infty} = 125^{+8}_{-5} \, {
m eV}$$

•
$$F_{\rm X} =$$

8.5 × 10⁻¹³ erg s⁻¹ cm⁻²
(0.1-12 keV)

•
$$\sigma_1 = 0.18^{+0.06}_{-0.04} \, \mathrm{keV}$$

•
$$EW_2 = -55 eV$$

•
$$\chi^2_{\nu} \sim 0.93$$

(63% for 58 dof)

XMM J1046: a unique isolated neutron star

Giant nebula might harbour other neutron stars (c.f. Townsley et al. 2011)

- Missing links beginning to emerge
 - magnetar with low B_{dip} (Rea et al. 2011)
 - radio-loud magnetar in X-ray quiescence (Levin et al. 2011)
 - orphan CCO (Calvera; Zane et al. 2011)

Image courtesy of NASA/CXC/PSU/L.Townsley et al.

XMM J1046: a unique isolated neutron star

Giant nebula might harbour other neutron stars (c.f. Townsley et al. 2011)

- Missing links beginning to emerge
 - magnetar with low B_{dip} (Rea et al. 2011)
 - radio-loud magnetar in X-ray quiescence (Levin et al. 2011)
 - orphan CCO (Calvera; Zane et al. 2011)
- Spectrum (very thermal) remarkably similar to RRAT J1819-1458. Consistent with a fainter and more absorbed XDINS
 - simple bbody, nsa not enough
 - evidence for lines under investigation
 - local abundance and adopted LOS absorption (cross-sections etc.) crucial to interpret spectral features

Image courtesy of NASA/CXC/PSU/L. Townsley et al.

XMM J1046: a unique isolated neutron star

Giant nebula might harbour other neutron stars (c.f. Townsley et al. 2011)

Image courtesy of NASA/CXC/PSU/L.Townsley et al.

- Missing links beginning to emerge
 - magnetar with low B_{dip} (Rea et al. 2011)
 - radio-loud magnetar in X-ray quiescence (Levin et al. 2011)
 - orphan CCO (Calvera; Zane et al. 2011)
- Spectrum (very thermal) remarkably similar to RRAT J1819-1458. Consistent with a fainter and more absorbed XDINS
 - simple bbody, nsa not enough
 - evidence for lines under investigation
 - local abundance and adopted LOS absorption (cross-sections etc.) crucial to interpret spectral features
- 3
- Tentative spin period: very fast, 19 ms
 - analogy to Calvera (old CCO)?
 - in Carina: not recycled
 - confirm *P*, constrain *P* to estimate *B*!

Pires et al. (AIP, IAG-USP)

Thank you!

Pires et al. (AIP, IAG-USP)