A Catalogue of AGN In the XMM Archive (CAIXA) Excess variances in AGN

Gabriele Ponti

Marie Curie Fellow Southampton University

S. Bianchi, I. Papadakis, G. Matt, M. Guainazzi, N.F. Bonilla, P. Uttley

Are AGN variable in X-rays on days timescale?

Fourier transform: probably the most
powerful variability analysis technique
→ Power Spectral Density (PSD)

Uttley +05

Are AGN variable in X-rays on days timescale?

Fairall 9: log(M_{BH})=8.4 **Emmanoulopoulos +11** 1.6 5-10 keV Count-rate (counts·s⁻¹) 1.41.2 0.1 0.8 0.6 0.4 0.2 20000 40 000 60,000 80,000 100 000 120000 0 Time (s)

PSD study in high mass AGNon days timescale:→ impossible!

1) Long monitoring

 \rightarrow only for few sources

2) Different technique

→ excess variance

Are AGN variable in X-rays on days timescale?

PSD study in high mass AGN on days timescale:

→ impossible!

- 1) Long monitoring
- ➔ only for few sources
- 2) Different technique
- → excess variance
- Not data demanding!

$$\sigma_{rms}^2 = \frac{1}{N\mu^2} \sum_{i=1}^{N} [(X_i - \mu)^2 - \sigma_i^2]$$

Xi = value in time bin i N = number of time bins in interv. μ = mean value in interv. σ^2 i = Poissonian noise

Time bin = 250 s Intervals = 10, 20, 40, 80 ks

2-10 keV band

Scaling relations from PSD studies

Scaling relations from excess variance

NGC 405 0.1 Frequency 0.01 10^{-3} × Power 10^{-4} MR 2251-178 NGC 3516 0^{-5} 10^{-8} 10^{-7} 10^{-6} 10^{-3} 10^{-5} 10^{-4} 0.01 Frequency (Hz)

Excess variance is the integral of PSD in the sampled frequency range!

O'Neill +05

Excess variance depends on M_{BH}

Scaling relations from excess variance

O'Neill +05

Excess variance depends on M_{BH}

Excess variance studies do not confirm the accretion rate dependence!

Open problems:

Does the variability depend on accretion rate? On other parameters? (L, Γ , FWHM_{HB}, AGN type)

Test scaling relations on larger samples...

Testing scaling relations in large AGN samples

CAIXA:

(Catalogue of AGN In the XMM Archive)

All radio-quiet X-ray un-obscured AGN

pointed by XMM for >10ks

→ 161 AGN (260 XMM observations)
 > 3 times the AGN of O'Neill et al. (2005)

BH mass for 125 AGN FWHM_{H β} for 158 AGN L_{Bol} from: Woo Urry 2002; Vasudevan et al. 2007; Marconi et al. 2009

Reverberation:

All AGN with BH mass from reverberation

→ 32 sources (29 of which are in CAIXA)

Variability vs. M_{BH}

Variability extremely well correlated with M_{BH} Slope ~ -1 \rightarrow universal PSD scaling with M_{BH} (scatter ~ factor 2-3)

Variability vs. M_{BH}

Which is the origin of the larger scatter in the CAIXA sample?

1) The scatter is due to the larger uncertainties associated with non-reverberation BH mass estimates

2) The variability depends on a second parameter + CAIXA spans a larger range of this parameter

Variability vs. M_{BH}

Which is the origin of the larger scatter in the CAIXA sample?

- 1) The scatter is due to the larger uncertainties associated with non-reverberation BH mass estimates
- 2) The variability depends on a second parameter + CAIXA spans a larger range of this parameter

→ X-ray variability: tool to measure of M_{BH} → More accurate than single spectra estimates

Variability vs. accretion rate

1) Not very significant

2) Large scatter

3) Correlation driven by M_{BH} dependence?

Variability ~ M_{BH}^{-1}

→ Variability * M_{BH}

Get rid of M_{BH} dependence

We confirm the result of O'Neill et al. (2005) No dependence with accretion rate is observed

BUT: how can be that PSD and excess variance give different results?

No dependence with accretion rate is observed

McHardy et al. 2006

CASE 1: Small BH mass Break at high frequency

No accretion rate dependence!

McHardy et al. 2006

As expected the more massive AGN show a trend of higher variability with accretion rate

The large scatter probably is due to uncertainty on $\rm L_{\rm bol}$ and $\rm M_{\rm BH}$

Dependence weaker than expected... how can that be?

McHardy et al. 2006

PSD norm vs. accretion rate?

Preliminary

Similar behavior observed in BHB **Gierlinski +08** First evidence of Mdot vs. PSD norm correlation PSD high frequency tail more fundamental than break

Excess variance DO NOT observe accretion rate dependence because:
1) Different expected relation with M_{BH}
2) Variation in PSD normalization
3) Large scatter in L_{bol} and M_{BH}

Variability vs. Luminosity

The variability vs. luminosity relation is a byproduct of the variability vs. M_{BH} relation

Variability vs. FWHM_{Hβ}

The variability vs. FWHM_{H β} relation is a byproduct of the variability vs. M_{BH} relation

Variability vs. spectral index

Variability- Γ correlation already observed but never so significant!

In CAIXA:

 Γ vs. M_{BH} not significant

 Γ correlated with Mdot? (possible but Γ ~Mdot^{0.1})

Shemmer+06; Saez+08; Sobolewska+09; Wu+08

NLS1 are more variable than broad line AGN Why?

NLS1 are more variable than broad line AGN Why?

NLS1 → smaller M_{BH} → higher accretion rate

NLS1 are more variable than broad line AGN Why?

NLS1 higher variability mainly due to smaller M_{BH}

NLS1 suggest scaling with accretion rate

Conclusions:

- 1) Excess variance is an accurate tool to measure $M_{BH} \rightarrow \text{scatter} < \text{factor 2-3}$ (more accurate than the ones based on single epoch spectra...)
- 2) The expected excess variance vs. accretion rate relation is complex (depends on M_{BH}) + large scatter in the relation is introduced by uncertainties on L_{Bol} and M_{BH} + indications for a PSD normalization vs. accretion rate anti-correlation Thus O'Neill et al. (2005) missed the accretion rate dependence (McHardy et al. 2006)
- 3) Excess variance vs. luminosity relations is a byproduct of variability vs. M_{BH} relation 4) Same for excess variance vs. FWHM_{HB} relations
- 5) Excess variance well correlated with 2-10 keV spectral index (>99.99 %) This is not a byproduct of M_{BH} dependence
- 6) NLS1 more variable than BL AGN simply because of smaller M_{BH} and higher accretion rate