13 268 X-ray sources in the Carina Nebula: the young stellar population revealed by the *Chandra Carina Complex Project*

PI: Leisa Townsley (Penn State)

Thomas Preibisch

University Observatory Munich

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES CCCP Special Issue Vol. 194, May 2011

Radiative feedback → less fragmentation → higher stellar masses ?

top-heavy IMF ? deficit of low-mass stars in massive clusters ?

Cloud dispersal ? OR triggered star formation ?

• Destruction of protoplanetary disks ? Consequences for planet formation ?

Science Context: How important is feedback from massive stars ?

Orion Nebula Cluster

$$\theta^{1}$$
C Ori: SpT = O6
M = 36 M_o
 $Q_{EUV} \approx 10^{49} \text{ s}^{-1}$
 $P_{wind} \approx 100 \text{ L}_{o}$

→ Feedback is not very important in this cluster The *most massive stars* in starburst clusters produce *much* stronger feedback:

SpT = O3 $M_* \sim 100 M_{\odot}$ $Q_{EUV} \sim 10^{50} \text{ s}^{-1}$ $P_{wind} \sim 10\ 000\ L_{\odot}$

To study the effect of massive star feedback, we need to look at *more massive = more distant* regions → requires observations with high resolution & sensitivity

The Great Nebula in Carina

Tr 14

Tr 15

Tr 16

Orion Nebula at the same physical scale

+ 70 O+WR stars $(M_{*,max} \sim 120 M_{\odot})$

Zoom into the central region:

η Car~ 120 M_o log L = 6.67 L_o P_{wind} = 30 000 L_o

Tr 1

0

HD 93129A O3Ia, \geq 100 M_{\odot} log L = 6.17 L_{\odot}, P_{wind} = 7000 L_{\odot}

Ν

WR 25 \geq 70 M_o, log L = 6.22 L_o, P_{wind} = 5100 L_o

Tr 14

UV radiation & winds of the massive stars disperse the clouds \rightarrow <u>terminate star formation</u>

© ESO images

Orion Nebula 2 O stars	Carina Nebula	30 Doradus	
$M_{*,max} = 36 M_{\odot}$	$M_{*,max} \sim 120 M_{\odot}$	$M_{*,max} \sim 150 M_{\odot}$	
large enough to sample the top of the IMF			
close enough to stu	dy low-mass stars		
1'' = 420 AU = 0.002 pc	1" = 2300 AU = 0.01 pc	1" = 52 000 AU = 0.25 pc	
Carina is the best bridge between			

detailed studies of nearby regions and

more massive but more distant extragalactic starburst regions

 Evidence for on-going and triggered star formation

Many dust columns contain young stellar objects in their heads

Treasure Chest

Spitzer IRAC map 3.6, 4.5, 8.0 µm

BUT: The sample of the ~ 1500 known young low-mass stars is <u>highly incomplete</u>

HAWK-I survey: 600 336 infrared sources in Carina Nebula

Preibisch et al. 2011, A&A 530,A43:

HAWK-I J-H-K_s composite of the central part:

galactic latitude = -0.6° -> > 95% of these are unrelated background objects !

Chandra Carina Complex Project (CCCP)

team of ~ 30 X-ray astronomers PI: L. Townsley (Penn State)

- 22 pointing mosaic covering **1.4 square-deg**
- Exposure time \geq 60 ksec
- Total observing time:
 1.34 Msec = 15.6 days

Detection limit: 10^{29.9} erg/sec Completeness limit: 10^{30.5} erg/sec

The first unbiased sample of the low-mass stellar population.

 $\geq 80\%$ complete at ~ 1 $\rm M_{\odot}$ ~50% complete at ~ 0.5 $\rm M_{\odot}$

1) Image Quality Example: the compact cluster Tr 14

HAWK-I J-H-K

Chandra X-ray

FWHM ≈ 0.6"

FWHM ≈ 0.8"

2) <u>X-ray – Infrared Source Identification</u> Examples

X-ray error circle radius ≈ 0.5 " HAWK-I image: FWHM = 0.6"

2MASS image

Sub-arcsecond resolution is essential for a proper identification of the Chandra X-ray sources !

3) <u>Classification of X-ray sources</u>

Broos et al. 2011, ApJS 194, 4

Object Classes:

- H1: Foreground stars
- H2: Young Stars in Carina
- H3: Background Stars
- H4: Extragalactic (AGN)

14 368 X-ray point sources

4) Spatial distribution

Only the 30% brightest X-ray members are shown:

Clustering analysis:

Feigelson et al. 2011, ApJS 194, 9

 20 principal clusters (mostly known before)
 +31 small groups

 \rightarrow **5457** X-ray sources in a **clustered** population

 5271 X-ray sources in a distributed population (previously unknown)

5) The size of the low-mass stellar population

Preibisch et al. 2011, A&A 530, A34

- Number of X-ray detected stars with mass estimate (from CMD) $\ge 1 M_{\odot}$: 3185
- 78 stars with M > 20 M_{\odot} Field-star IMF (Kroupa 2002) prediction N(M \ge 1 M_{\odot})_{expected} \approx 3500

There is clearly <u>no deficit of low-mass stars</u>

IMF(Carina Nebula) \approx IMF(field) down to 1 M_{\odot}

Field IMF extrapolated down to 0.1 M_{\odot}: N_{*} ≥ 45 000, M_{*,tot} ≥ 30 000 M_{\odot}

The Carina Nebula is one of the most massive clusters known in our Galaxy! Carina Nebula > NHC 3603, Arches Cluster ≈ Westerlund 1

6) Ages and circumstellar disk fractions of clusters in Carina

IR color-color/color-magnitude diagrams of the X-ray selected populations: **Ages** and **infrared excess fractions**

Tr 16:	~ 3-4 Myr	(7 ± 1) %
Tr 14:	~ 1-2 Myr	(10 ± 1) %
Tr 15:	~ 5-8 Myr	(2 ± 1) %
TCC:	< 1 Myr	(32 ± 5) %

Preibisch et al. 2011, A&A 530, A34

The infrared excess (= disk) fractions ⁰ in the clusters in the Carina Nebula are considerably lower than in other clusters of similar ages!

→ fast dispersal of circumstellar disks due to the harsh environment

see also: Wang et al. 2011, ApJS 194, 11; Wolk et al. 2011, ApJS 194, 12

7) Diffuse X-ray emission Townsley et al. 2011, ApJS 194, 16

Stellar winds (+ supernovae ?) have filled the super-bubble with hot plasma.

 $L_{X,diff} = 3 \cdot 10^{35} \text{ erg/sec}$ $T_{X} = 4 \text{ MK} + 7 \text{ MK}$

Orion: $L_{X,diff} = 5 \cdot 10^{31} \text{ erg/sec}$ $T_X \leq 2 \text{ MK}$

Ongoing/future studies: Multi-wavelength analysis of the interaction between the massive stars and the surrounding clouds

250 µm

Chandra X-ray

Spitzer 3.6 – 8 µm The End