

The most luminous ULXs: evidence for IMBHs?

Tim Roberts

Andy Sutton (Durham), Jeanette Gladstone (Alberta), Dom Walton (Cambridge), Amy Scott (Leicester)

With contributions from:

Matt Middleton, Chris Done, Floyd Jackson (Durham)

Lucy Heil, Simon Vaughan, Silvia Mateos, Victoria Heard (Leicester)

Why care about ULXs?

- □ > 10^{39} erg s⁻¹ definition: this is ~ Eddington limit for a 10 M_{\odot} black hole
- □ Which implies either a new ~ $10^2 10^4 M_{\odot}$ class of intermediate-mass black holes...
 - Remnant seeds of SMBHs?
- □ ...or stellar mass (< 100 M_{\odot}) black holes that exceed the Eddington limit
 - Most extreme accretion environments

ULX spectral sequence

- Need highest quality data
- IMBH model: cool disc + power-law, sub-Edd
- But data is unlike sub-Edd states: not IMBH
- Broad disc at lower L_x
- Cool disc plus optically thick comptonisation at higher L_x: ultraluminous state

What about X-ray timing? Heil, Vaughan & Roberts 2009

ULXs and radiatively-driven winds

- Theory predicts a key characteristic of super-Eddington accretion is a radiatively-driven wind (e.g. Poutanen et al. 2007, Ohsuga & Mineshiga 2011), driven from photospheric radius
- Emergence of this optically-thick component provides 'cool disc'; becomes increasingly important with accretion rate
- Both components invariant: where variability present, could be extrinsic from clumpy wind in line-of-sight (e.g. NGC 5408 X-1)

Are there any ULX-IMBHs?

0.5 Ms Chandra LP data

- □ Difficult to exceed L_{Edd} by factor > 10
- But tail of high L_x (> 2 × 10⁴⁰ erg s⁻¹) ULXs – IMBH candidates?
- □ Particularly HLXs ($L_x > 10^{41} \text{ erg s}^{-1}$)
- Famous objects e.g.M82 X-1, ESO 243-49

HLX-1 See Farrell talk next

A new 2XMM sample

Walton, Roberts, Mateos & Heard 2011

- New 2XMM-DR1 + RC3 catalogue: 650 observations of 470 candidate ULXs
- Low contamination (~20% QSOs)
- But ~60 detections of ~45 objects with L_x > 2 × 10⁴⁰ erg s⁻¹
 - ~ 30% contamination

A sample of the most luminous ULXs

- □ Select good detections with $L_x > 5 \times 10^{40}$ erg s⁻¹, *d* < 100 Mpc (excluding M82 X-1)
 - 10 objects, including 3 candidate HLXs
 - > 40 observations (at least 2 per object), including Chandra data for 8 objects
 - Data quality moderate (100s of counts on average per observation)
- Expect ~3 QSO contaminants; one HLX candidate newly ID'ed by SDSS as QSO

7/10 found in spiral galaxies; 3/10 around ellipticals (includes 2 QSOs)

Weds 29th June 2011

X-ray spectra

Spectra fit with simple power-law or multi-colour disc models, majority better fitted by power-law (although few datasets reject either model) 0200780101 (Src. 1)

Observations of NGC 470 HLX candidate, model is best-fitting power-law

Weds 29th June 2011

NGC 5907 ULX

Best quality data (> 5000 counts per observation): find break characteristic of ultraluminous state **BUT**: distance uncertain; $L_x \sim 2 \times 10^{40}$ erg s⁻¹ for $d \approx 10$ Mpc, this is probably an 'ordinary' ULX...

Spectra compared to other ULXs

Brightest ULX appear to be spectrally harder than general population (cf. also Berghea et al. 2008)

Variability compared to other ULXs

Fractional variability on 200 s and 2 ks timescales: brighter objects appear more variable

Longer term luminosity variability

Do the brightest ULXs harbour IMBHs?

- X-ray data: brightest objects may be spectrally harder and more variable than 'classic' ULXs
- Locations: but found in similar habitats
- □ What are they? Alternatives:
 - IMBHs not ruled out!
 - Rare examples of hyper-accretion plus big stellar black hole (Zampieri & Roberts 2009)
 - Undiagnosed contaminants (QSOs, SNe, ...?)

Conclusions

Well-rehearsed spectral & temporal arguments for ULXs as super-Eddington accretors below ~ 2 × 10⁴⁰ erg s⁻¹

Key: radiatively-driven wind

- But the brightest ULXs show signs of different behaviour evidence for IMBHs?
- □ REQUIRES BETTER DATA
 - Multi-wavelength follow-up, deep X-ray obs.
 - Excellent targets for ATHENA