

X-ray and Observational Astronomy

New Constraints on the X-ray Spectral Properties of Type 1 AGN

Amy Scott

Gordon Stewart, Silvia Mateos

Dave Alexander, Sarah Hutton, Martin Ward

www.star.le.ac.uk

aes25@star.le.ac.uk

Motivation

- Largest sample of type 1 AGN with X-ray spectra
 Aim: Characterize the typical shape
- So far, most information from individual, bright AGN
- Despite lower S/N spectra, samples show the allowed range in properties
- Recent sample studies:
 - Bianchi et al. 2009. CAIXA, 160 AGN, XMM targets, High S/N, but biased to low z
 - Young et al. 2009. SDSS/XMM , ~300 sources used in analysis, no SE modelling
 - Mateos et al. 2010. XWAS, 500 type 1 AGN

Optical Data

- SDSS DR5 quasar catalogue (Schneider et al. 2007)
- 5740 deg²
- 77,429 quasars
- 0.08 < z < 5.41
- FWHM > 1000 kms⁻¹

Sample Creation

X-ray Data

- XMM-Newton
- 2XMMi (Watson et al. 2009)
- 420 deg²
- 290,000 detections →
 220,000 unique sources

Cross-correlate using 10" matching radius → 1281 unique objects

Sample Creation

- Required >75 total counts
- \rightarrow 761 sources
 - z: 0.11 5.41, L_x: 10⁴³ 10⁴⁶ ergs⁻¹
 - CTS: ~50% > ~300 counts

Spectral Fitting

• XSPEC, 0.5-12.0 keV

 Assume power law fit unless additional components are required by an F-test at >99% significance

Model	Number of sources best- fit with model	
Power law	672	88%
Power law + intrinsic absorption	29	4%
Power law + soft excess	55	7%
Power law + intrinsic absorption + soft excess	5	1%
	761	100%

Gamma Distribution

- Fit with Gaussian
 - $<\Gamma > = 1.99 \pm 0.01$
 - $-\sigma = 0.30 \pm 0.01$
 - $\Delta \Gamma = 0.13$
 - Similar to previous results
 - p = 0.34%
 - i.e. Not a good fit due to presence of extremes in wings

Trends of Γ with z and L_X

Γ vs z, ~3σ

- Higher z sources have flatter Γ
- Not due to reflection

Γ vs L_x, ~5σ
 Higher L_x sources have flatter Γ

27/06/2011

- Black Hole mass estimates from Shen et al. 2008
 - ~56,000 M_{BH} for DR5QSO
 - Virial Method
 - 79% of sample included
- Eddington Luminosity:

$$L_{Edd} = \frac{4\pi GM_{BH}m_p c}{\sigma_T} \approx 1.3 \times 10^{38} \frac{M_{BH}}{M_{Sun}} ergs^{-1}$$

Bolometric Luminosity:

 \mathbf{i}

(Marconi et al. 2004)

$$\operatorname{og}\left(\frac{L_{bol}}{L_{X}}\right) = 1.54 + 0.24\ell + 0.012\ell^{2} - 0.0015\ell^{3}$$

$$\ell = \log L_{bol} - 12$$

1

1

• Γ vs Eddington Ratio - HB, ρ = +0.26, 2.8 σ

27/06/2011

- Γ vs Eddington Ratio
 - MgII, no correlation

27/06/2011

• Γ vs Eddington Ratio - CIV, ρ = -0.32, 2.9 σ

Radio Properties

• Radio Loudness, $R_L = F_R / F_O$, $R_L > 10$ is radio loud

(Kellermann et al. 1989)

 F_R = flux at 5 GHz (from FIRST - Becker et al. 1995) F_O = flux at 4400Å (from SDSS)

\rightarrow 552 RQQ, 75 RLQ

Radio Properties

27/06/2011

Absorbed Sources

- Type 1 not expected to be absorbed (Unified Model)
- Intrinsic absorption detected in 4% sample
- N_H: 10²¹ 10²³ cm⁻²

Absorbed Sources

- Type 1 not expected to be absorbed (Unified Model)
- Intrinsic absorption detected in 4% sample
- N_H: 10²¹ 10²³ cm⁻²
- No trend of N_H with z or L_x

Absorbed Sources

- Type 1 not expected to be absorbed (Unified Model)
- Intrinsic absorption detected in 4% sample
- N_H: 10²¹ 10²³ cm⁻²
- No trend of N_H with z or L_x
- No significant variation in the percentage of absorbed sources

• Soft Excess detected in 7% of sources

Soft Excess detected in 7% of sources

• <kT> = 0.17 ± 0.09 keV

68% of sources: 0.1 - 0.25 keV i.e. Narrow range

27/06/2011

Conclusions

- Studied the X-ray spectral properties of 761 type 1 AGN
- Characterize the typical shape:
 - $<\Gamma> = 1.99 \pm 0.01$, $\sigma = 0.30 \pm 0.01$
 - SE found in 7% with values $\langle kT \rangle = 0.2 \pm 0.1 \text{ keV}$ Ubiquitous?
- Surprisingly, intrinsic cold absorption found in 4% with N_H = 10²¹ - 10²³ cm⁻²
- Trends with Γ:
 - Marginal trend between Γ and z (3 σ)
 - Trend between Γ and L_{X} (5 σ)
 - Trend between Γ and Eddington ratio depends on which broad line is used to measure the black hole mass.

• \rightarrow arXiv: 1106.4904 (MNRAS accepted)