Exploratory X-ray Monitoring of High Redshift Radio-Quiet Quasars

Ohad Shemmer University of North Texas

Collaborators: Niel Brandt, Don Schneider (Penn State), Rob Gibson (U. Washington), Cristian Vignali (U. Bologna), Shai Kaspi (Tel Aviv U., Technion)

Were Quasars More X-ray Variable in the Early Universe?
 Chandra Monitoring of Radio-Quiet Quasars at *z*≃4.2
 Swift Monitoring of Radio-Quiet Quasars at *z*≃2
 Ongoing and Future Work

1. Were Quasars More X-ray Variable in the Early Universe?

Motivation (a):

X-ray spectral properties of quasars have not changed significantly across cosmic time.

1. Were Quasars More X-ray Variable in the Early Universe? Motivation (b):

Quasars of matched luminosity appear to be *more* X-ray variable at higher redshift.

1. Were Quasars More X-ray Variable in the Early Universe? Motivation (c):

But distant quasars, being more luminous and hence physically larger than nearby quasars/AGN/Seyferts, are supposed to exhibit slower and suppressed variations?!?

Some possible interpretations include evolution of:

* The X-ray variability mechanism

* The X-ray emitting region size

* The accretion rate/mode/efficiency

Testing this requires X-ray variability information about the most distant quasars.

What are the amplitudes and timescales of X-ray variations of the most distant quasars?

2. Chandra Monitoring of Radio-Quiet Quasars at $z \approx 4.2$

Systematic X-ray variations of the most distant quasars have not been carried out yet.

Why X-rays?

X-ray variations are typically faster and stronger relative to those in the optical.

X-ray monitoring is more efficient for studying continuum variations in the most distant quasars.

2. Chandra Monitoring of Radio-Quiet Quasars at $z \approx 4.2$

Systematic X-ray variations of the most distant quasars have not been carried out yet.

Why X-rays?

X-ray variations are typically faster and stronger relative to those in the optical.

X-ray monitoring is more efficient for studying continuum variations in the most distant quasars.

2. Chandra Monitoring of Radio-Quiet Quasars at $z \approx 4.2$

Target selection

Light Curves

★ RQQs at z > 4.
★ Have at least two distinct epochs (i.e., continuous exposures).
★ Bright enough for economical Chandra observations.

Sample Properties

			Galactic $N_{\rm H}$	$\log L_{2-10 \text{ keV}}$	
Quasar	z	M_B	$(10^{20} \text{ cm}^{-2})$	(erg s^{-1})	$\alpha_{\rm ox}$
PSS 0926+3055	4.19	-30.1	1.89	45.8	-1.76
PSS 1326+0743	4.17	-29.6	2.01	45.7	-1.76
Q 0000-263	4.10	-29.3	4.08	45.7	-1.70
BR 0351-1034	4.35	-28.2	1.67	45.4	-1.69

 $(n_i - \bar{n})^2$

Maximum excess variance: $\sigma_{\max} = \max_{i \in 1 \dots N_{obs}} \sqrt{1}$

Need to break the strong L-z dependence inherent in quasar samples.

Sample Properties and Light Curves

			Galactic $N_{\rm H}$	$\log L_{2-10 \text{ keV}}$	
Quasar	z	M_B	$(10^{20} \text{ cm}^{-2})$	(erg s^{-1})	α_{ox}
PG 1247+267	2.04	-29.5	0.90	45.9	-1.75
PG 1634+706	1.33	-30.1	4.48	46.1	-1.68
HS 1700+6416	2.74	-29.9	2.66	46.2	-1.91

Target selection

- * RQQs at z~2.
- ★ Luminosities comparable to the Chandra sample.
- * Have the most epochs (5-14).
- ★ Bright enough for economical Swift observations.

Fractional variability amplitude

$$F_{
m var} = rac{1}{\langle X
angle} \sqrt{S^2 - \langle \sigma_{
m err}^2
angle}$$

Quasar	$F_{\rm var}$
PG 1634+706	0.29 ± 0.05
PG 1247+267	0.40 ± 0.09
HS 1700+6416	0.85 ± 0.12

Variability amplitudes similar to low-*L* AGN.

Extreme X-ray variability of HS 1700+6416

Implying $\Delta L/\Delta t \approx 2 \times 10^{41}$ erg s⁻²

Taking a radiative efficiency (η) limit $\eta \ge 4.8 \times 10^{-43} \Delta L / \Delta t$ (e.g., Fabian 79), this gives $\eta \ge 0.1$.

Extreme X-ray variability of HS 1700+6416

Extreme X-ray variability of HS 1700+6416?

The X-ray Universe 2011, Berlin, June 28, 2011

Variability Structure Function

$$SF(\tau) \equiv \sqrt{\left\langle \left[m(t+\tau) - m(t)\right]^2 \right\rangle}$$

Denser sampling is required to assess variability timescales.

4. Ongoing and Future Work

*Continue the *Chandra* monitoring and add one epoch per Cycle for the $z \approx 4.2$ sources.

- *Continue the Swift monitoring to obtain better temporal sampling for the $z \approx 2$ sources.
- *Compute variability structure functions and F_{var} values for the *Chandra* sources.
- *Search for correlated X-ray-optical variations (α_{ox}): 1) Swift XRT vs. UVOT, 2) Chandra vs. ground-based photometry and spectroscopy.
- *Search for X-ray spectral variations in the brightest Swift sources.
- ★Obtain a *qualitative* assessment of the timescales and magnitudes of the X-ray variability allowing development of a strategy for more ambitious and long-term monitoring programs of distant quasars.