

Luminosity functions of LMXBs in different stellar environments

Zhongli Zhang¹, Marat Gilfanov¹, Ákos Bogdán⁴, Rasmus Voss², Gregory Sivakoff³, Ralph Kraft⁴, Nicola Brassington⁴, Arunav Kundu⁵, Andrés Jordán⁶, Craig Sarazin³

¹ Max-Planck-Institute for Astrophysics, Garching, Germany
 ² Radboud University Nijmegen, The Netherlands
 ³ University of Virginia, USA
 ⁴ Harvard/Smithsonian Center for Astrophysics, USA
 ⁵ Eureka Scientific, Oakland, USA
 ⁶ Pontificia University, Santiago, Chile

Introduction

- Low-mass X-ray binary
- XLFs of LMXBs in different stellar environments
 dependence on stellar density and velocity
 - globular cluster vs. galaxy field
 - globular cluster vs. galaxy nucleus
- ➤ N(LMXB)/M_{*} dependence on stellar age
- LMXB spatial distribution (effect of supernova kicks?)

Summary

Low-mass X-ray binary

LMXB: A low mass donor star (< 1 M_{\odot} main sequence, WD, red gaint ...) transfers mass to a compact accretor (NS/BH) by Roche-Lobe filling

*N (LMXB) ~ M** (old stellar system) Universal XLF:

Large fraction of X-ray emission in E/S0

Chandra (0.5")

Formation of LMXB

Primodial channel :

binary star evolution (loss of orbital momentum, or evolution of the donor star) — X-ray active phase is deplayed

Dynamical channel :

1) Tidal capture of a NS by a non-degenerate single star.

2) A collision between a NS and an evolved single star. (subgiant, RGB, AGB)

3) A NS exchanges place with a star in a binary system.

XLF (GC vs. field)

N (LMXB) / M_{*} is few hundred times higher in galactic globular clusters than in the field (Clark 1975).

GC-LMXB: dynamical formation **Field LMXB:** primodial formation

Debate: whether field LMXBs are formed in GCs or formed in situ.

We make the **most accurate LF of GC-LMXBs to date** and compare with field LMXBs.

Sample: the Milky Way, M31, Centauraus A, M81, Maffei1, NGC 3379, NGC 4697, NGC 4278 CenA (Voss et al. 2009)

(185 GC-LMXBs, 496 field LMXBs)

Entire shapes are different! Not all the field LMXBs are formed in GCs!

XLF (GC vs.Galaxy nucleus)

Stellar velocities in galactic nuclei is 5~10 times higher than in GCs

In GC: tidal capture of NS by MS star (> $0.3M_{\odot}$) **In Galactic nuclei:** tidal capture of NS by MS star (< $0.3 M_{\odot}$) (Voss and Gilfanov, 2007b)

N(LMXB)/M* via stellar age

Primodial formation channel:

nuclear evolution time scale of the donor star and/or binary orbit decay $(1 \sim 10 \text{ Gyr time scale})$

stellar age can be secondary correlation to scale N_{LMXB}

Sample selection:

 1) E or S0, no recent star formation.
 2) D < 25 Mpc (detection sensitivity > 5.e37 erg/s)
 3) *L_k* > e10 *L_{k,O}* 4) Galaxy age: 1Gyr ~ >10 Gyr.

A preliminary result 20 galaxies

LMXB spatial distribution

In some galaxies X-ray point source distribution is broader than K-band light distribution. Is this effect of supernova kicks?

LMXBs gain average system velocity of 180± 80 km/s (2 ~ 20 kpc in E07 ~ E08 yr)

Summary

> We study environment dependence of population of LMXBs in early- type galaxies, which includes dependence on stellar density (glob. clusters and galactic nuclei vs. field), stellar velocity (glob. clusters vs. galactic nuclei) and stellar age (young vs. old elliptical galaxies)

> XLF of GC and field LMXBs differ in the whole luminosity range, with the ratio of faint GC-LMXB much less than field population. This may be caused by helium accretion system in GCs. And proves that not all field LMXBs were formed in GCs.

> XLF of GC and LMXBs in nuclei of M31 differ in the bright end, which proves different dynamical formation channel based on different stellar velocity.

> N(LMXB)/M* differs between young and old galaxies with significance > 3σ (ongoing)

➢ In some galaxies the spatial distribution of LMXBs is broader than the K-band light distribution, which is possibly an effect of supernova kicks. (ongoing)

