ULXs in NGC 2276

Anna Wolter

Michela Mapelli, Emanuele Ripamonti, Fabio Pizzolato, Stefano Rota (laurea thesis)

NGC 2276 and NGC2300

Carlos and Crystal Acosta/Adam Block/NOAO/AURA/NSF

Sc at 32.8 Mpc High SFR

SFR=9.5 M_{\odot} /yr Kennicutt (1983) H α SFR=4.3 M_{\odot} /yr Kennicutt et al. (1994) H α SFR=5 M_{\odot} /yr James et al. (2004) H α

SFR=11 M_{\odot} /yr Sanders et al. (2003) FIR

Supernovae in NGC 2276

At least five SN are known in NGC2276, in the last 40 years.

Previous observations: ROSAT

- Mulchaey et al. 1993 ApJL, 404, L9
- Davis et al 1996 ApJ, 450, 601

NGC2300 group: first to be detected as extended in X-ray

Surface brightness profile centered on the peak emission, near but not on NGC2300 (about 2'.5 towards NGC2276).

Fit with King model $r_o = 4.28 + - 1 \text{ arcmin } \rightarrow -40 \text{ kpc}$ $\beta = 0.41 + - 0.3$ Exent up to 25' at least.

Previous observations: XMM-Newton

Davis & Mushotzky, 2004 ApJ, 604:653-661

Nucleus non detected: $Lx < 2 \times 10^{39}$ cgs Variable?

53 ksec; 1 ULX at Lx=1 x 10⁴¹ cgs

Right ascension

By using Z=0.22 Z_{\odot} (Kennicutt 1992) and SFR=5-10 M_{\odot} (~from H α and FIR) Mapelli et al predict a large number of BH and an expectation value for the number of ULX of ~5-10.

Mapelli et al. 2010 MNRAS in press, arXiv:1005.3548. (See also Michela Mapelli and Emanuele Ripamonti talks tomorrow)

To compare with 1 found!!

New data: CHANDRA

Rasmussen, Ponman, Mulchaey, 2006, MNRAS 370, 435

Observed 23 June 2004 for 45.8 ks

Gas at kT~0.3 -0.5 keV

 $Lx = 1.9 \times 10^{40} cgs$

This indicates about 1/3 of the group gas extension detected by ROSAT and confirmed by Chandra

kT ~ 0.8 keV

HI tail

Figure 5. As Fig. 1, but for a 7 × 7-arcmin2 region around NGC 2276 and

Chandra point sources

$H\alpha$ images

Gruendl et al 1993, ApJL, 413, L81

Fig. 4. The Hor image of NGC 2276. North is up and east is to the left. The FOV is 2' across.

Davis et al 1997, AJ, 114, 613

HII regions

Hodge & Kennicut 1983, AJ, 88, 296 Davis et al. 1997, AJ, 114, 613

72+13 HII region identified

OBJECT NAME = NGC 2276 B1950: 07 10 23.83 +85 50 54.0 SCALE= 1.500"/mm:1950

The HII regions and the H α map trace the arm shape: recent star formation.

A total of 19 sources are detected, from a few counts up to ~400.

Fit for the brightest sources are consistent with an absorbed power law. N_H ~ 1-3 x 10^{21} cm⁻² Γ ~1.6⁻ 1.8

What about the XMM-Newton ULX?

- The source is resolved in 6 sources, of luminosities ranging from a few 10³⁸ to almost 10⁴⁰ cgs.
- Sum of all point sources: $L_X(2-10 \text{keV}) = 2 \times 10^{40} \text{ cgs to}$ compare with : $L_X(2-10 \text{keV}) = 3.8 \times 10^{40} \text{ cgs in XMM}$ Newton $- L_X(0.5-10 \text{keV}) = 1.1 \times 10^{41} \text{ cgs}$ rescaled to 32.8 Mpc and (2-10 keV).
- About 30% of the flux might be in diffuse emission
- Possible variability of at least the brightest ULXs

XLF + contamination

From Hasinger et al. 1993 logN-logS only ~ 1.4 src are spurious $-7 \text{ src} > 10^{39} \text{ cgs}$

XLF compared with Grimm et al 2003 HMXB formula

Comparing also the number of ULX and their L_X we find SFR = $5.5M_{\odot}$ /yr or $5M_{\odot}$ /yr

$$N(L > 2 \times 10^{38} \text{ erg s}^{-1}) = (2.9 \pm 0.23) \text{ SFR } (M_{\odot} \text{ yr}^{-1}).$$

SFR
$$(M_{\odot} \text{ yr}^{-1}) = \frac{L_{2-10 \text{ keV}}}{6.7 \times 10^{39} \text{ erg s}}$$

Comparison with other galaxies

The two curves are 5 and 15 M_{\odot} /yr respectively

XLF not corrected for possibile confusion both in Cartwheel and NGC2276

I will *NOT draw* any conclusion about ULX being HMXB or not

Variability should be studied at high Lx.

Conclusion

- NGC2276 has a high SFR; high Hα luminosity; many ULXs (even if not at Lx ~ 10⁴¹ cgs) consistent with predictions
- It is embedded in group gas
- It interacts with NGC2300: tidal + ram pressure? SN winds?
- Is the interaction that drives the SF and the high number of ULX? (Encounter 400 Myr ago? Davis et al 1997)
- ULX are possibly located near HII regions (and also SN?)