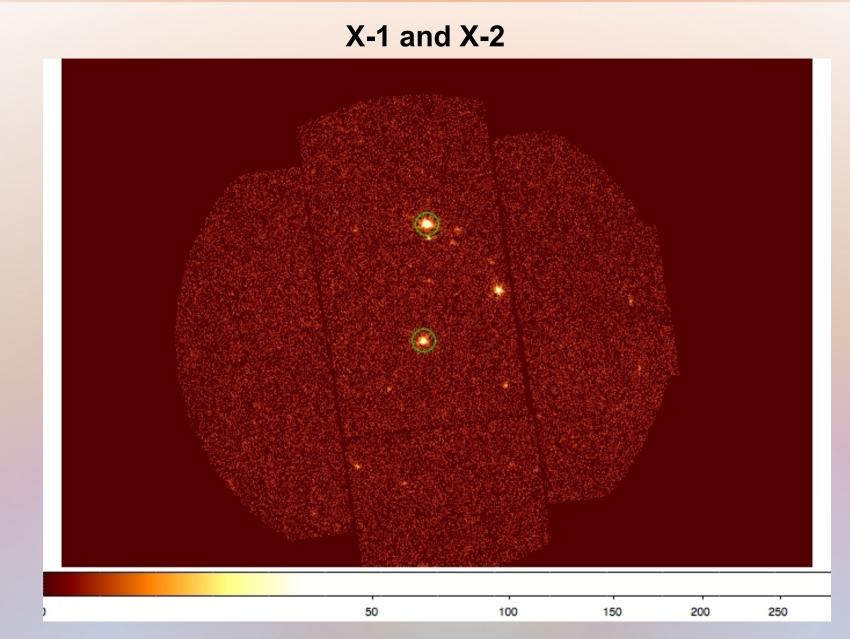
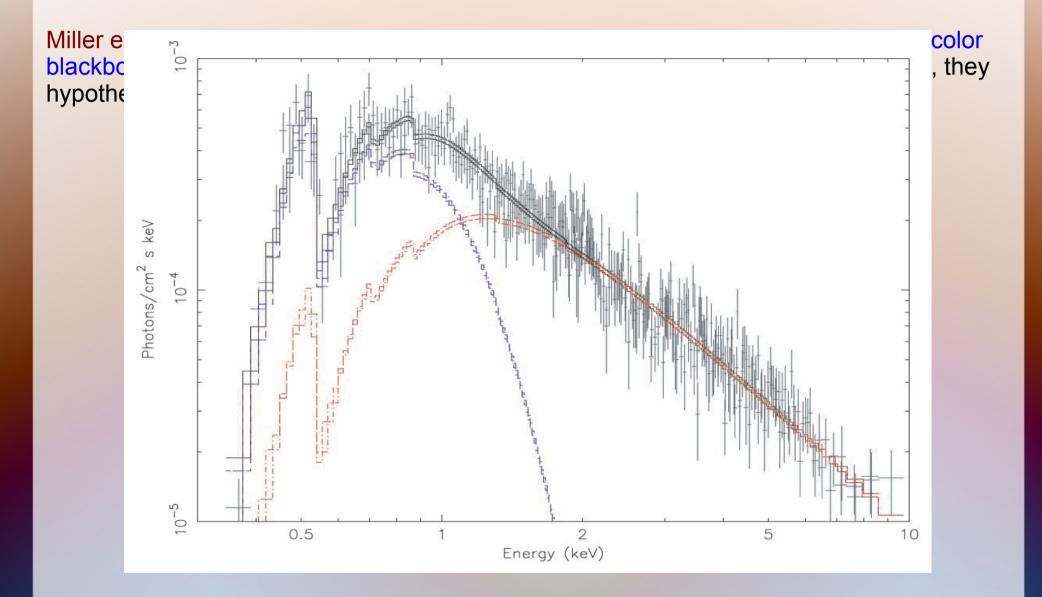
XMM-Newton 2010 Science Workshop


Six years of XMM-Newton observations of NGC 1313 X-1 and X-2

Authors: Fabio Pintore¹, Luca Zampieri² (¹Dipartimento di Astronomia di Padova) (²INAF - Osservatorio Astronomico di Padova)

X-1 and X-2



We analyzed 17 XMM-Newton observations of NGC 1313, that cover a period from 2000 to 2006. The spectral analysis was carried out with XSPEC v.12.5.1.

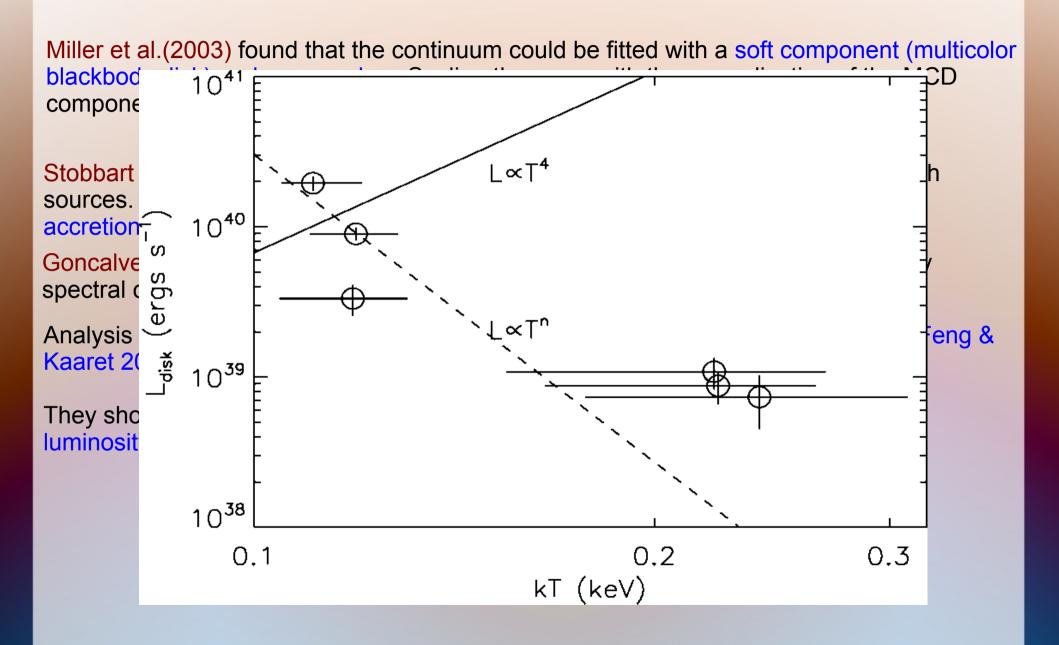
We analyzed 17 XMM-Newton observations of NGC 1313, that cover a period from 2000 to 2006. The spectral analysis was carried out with XSPEC v.12.5.1.

Miller et al.(2003) found that the continuum could be fitted with a soft component (multicolor blackbody disk) and a power-law. Scaling the mass with the normalization of the MCD component, they inferred the existence of an Intermediate Mass Black Hole.

Miller et al.(2003) found that the continuum could be fitted with a soft component (multicolor blackbody disk) and a power-law. Scaling the mass with the normalization of the MCD component, they inferred the existence of an Intermediate Mass Black Hole.

Stobbart et al.(2006) showed the presence of spectral curvature above 2 keV in both sources. They explained it with an optically thick corona coupled to the disk at high accretion rates.

Goncalves & Soria(2006) also questioned the robustness of the cool disc-blackbody spectral component.


Miller et al.(2003) found that the continuum could be fitted with a soft component (multicolor blackbody disk) and a power-law. Scaling the mass with the normalization of the MCD component, they inferred the existence of an Intermediate Mass Black Hole.

Stobbart et al.(2006) showed the presence of spectral curvature above 2 keV in both sources. They explained it with an optically thick corona coupled to the disk at high accretion rates.

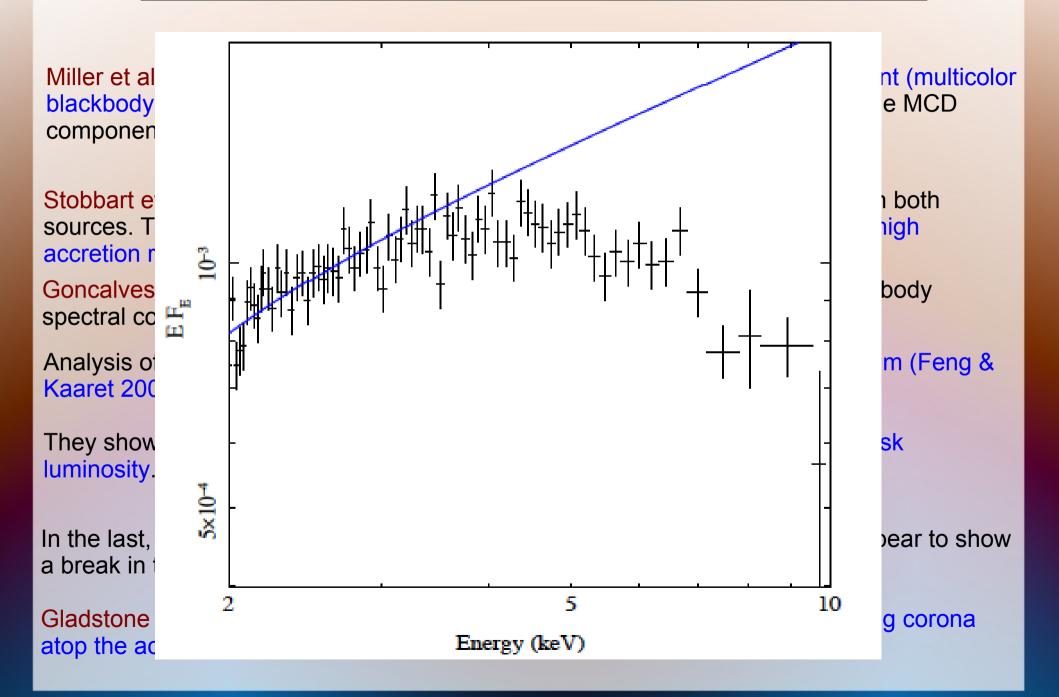
Goncalves & Soria(2006) also questioned the robustness of the cool disc-blackbody spectral component.

Analysis of the continuum with a power-law plus a multicolor blackbody spectrum (Feng & Kaaret 2006);

They showed an anti-correlation between the inner disk temperature and the disk luminosity.

Miller et al.(2003) found that the continuum could be fitted with a soft component (multicolor blackbody disk) and a power-law. Scaling the mass with the normalization of the MCD component, they inferred the existence of an Intermediate Mass Black Hole.

Stobbart et al.(2006) showed the presence of spectral curvature above 2 keV in both sources. They explained it with an optically thick corona coupled to the disk at high accretion rates.


Goncalves & Soria(2006) also questioned the robustness of the cool disc-blackbody spectral component.

Analysis of the continuum with a power-law plus a multicolor blackbody spectrum (Feng & Kaaret 2006);

They showed an anti-correlation between the inner disk temperature and the disk luminosity.

In the last, longest observation (2006, 122 ks long), NGC 1313 X-1 and X-2 appear to show a break in the spectrum at energies above ~ 3-5 KeV.

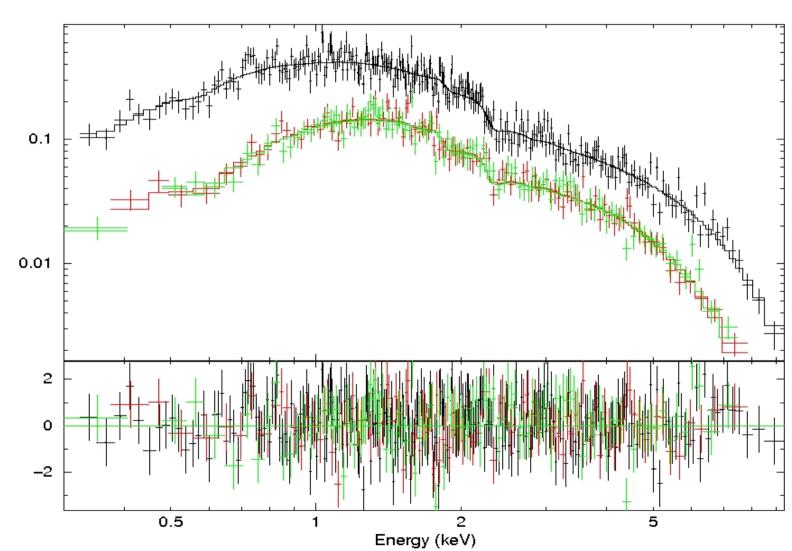
Gladstone et al.(2009) show that it can be modelled through a cool comptonizing corona atop the accretion disc.

COMPTT and EQPAIR

Gladstone et al. fitted the spectra of ULXs using a disc component plus two different comptonization models for the corona: COMPTT and EQPAIR.

COMPTT (Titarchuck 1994): analytic approximation to non-relativistic thermal comptonization which assumes that the seed photons for comptonization have a Wien spectrum.

EQPAIR (Coppi 1999): the model allows for a 'hydrib' plasma (thermal and non-thermal electron distributions) and calculates the resulting comptonizing spectrum without assuming that the electrons are non relativistic. The seed photons may have a disk or blackbody spectral distribution. For ULXs non-thermal processes are likely not to be important and hence we used the simplified version EQTHERM. Fit with the tbabs*tbabs*(eqtherm+diskbb) model


We consider the model: tbabs*tbabs*(eqtherm [comptt] + diskbb);

The first absorption column is kept fixed at 3.9*10²⁰ cm⁻² and represents Galactic absorption(*Dickey & Lockman 1990*)).

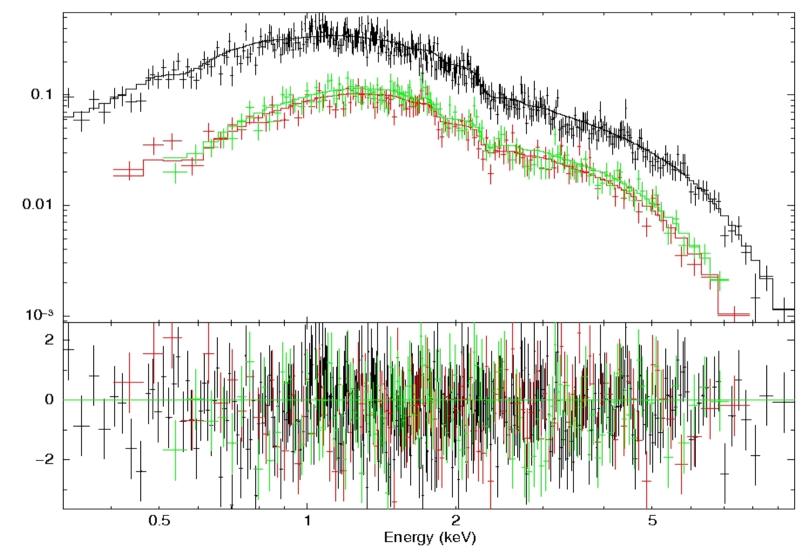
When a disk component is necessary, we set the seed photons temperature of the corona equal to the inner disk temperature of the *diskbb*.

Fit with the tbabs*tbabs*(eqtherm+diskbb) model

X-1

normalized counts s⁻¹ keV⁻¹

 \approx

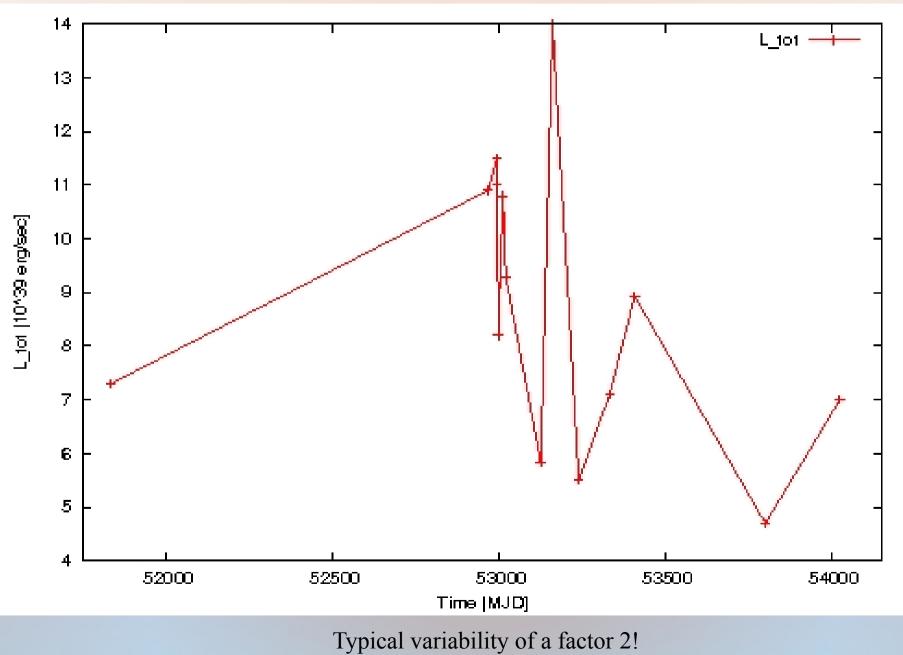

data and folded model

	X-1 (with comptt)							
Obs.ID	Instruments	nH	kT_{disk}	kTcoron	a au	0.3-10 KeV L_x	0.3-10 KeV L_{disk}	χ^2/dof
		$(10^{22} part/cm^2)$	(KeV)	(KeV)		$(10^{39} \text{ erg/sec})$	$(10^{39} \text{ erg/sec})$	
10/17/2000	PN/M1/M2	$\begin{array}{c} 0.23\substack{0.02\\ 0.02}\\ 0.17\substack{0.05\\ 0.05}\\ \end{array}$	$0.231_{0.004}^{0.004}\\0.11_{0.02}^{0.02}$	$2.24_{0.03}^{0.1}$	$8.2^{0.1}_{0.1}$	$7.3^{1}_{0.9}$	$2.00_{\scriptstyle 0.48}^{\scriptstyle 0.6}$	689.86/698
$\frac{11/25/2003}{12/21/2003}$	M1/M2 PN	$0.17_{0.05} \\ 0.19_{0.06}^{0.07}$	$\begin{array}{c} 0.11_{0.02} \\ 0.20_{0.04}^{0.03} \end{array}$	$2.7^{0.4}_{0.4}$ $1.83^{0.2}_{0.0}$	$5.6^{0.6}_{0.2}$ $_7$ $6.7^{0.2}_{0.2}$	$\frac{10.9^9_5}{11.5^6_4}$		23.12/39 195.47/227
12/21/2003 12/23/2003	PN	$0.19_{0.06} \\ 0.25_{0.02}^{0.02}$	$\begin{array}{c} 0.20_{0.04} \\ 0.18_{0.02}^{0.02} \end{array}$	$2.4_{0.2}^{0.3}$		$11.5_4 \\ 10.9_5^9$		66.93/76
12/25/2003 12/25/2003	PN	$0.14_{0.06}^{0.05}$	$0.17_{0.04}^{0.02}$	$3.30^{0.7}_{0.7}$		$8.22_{5.0}^{8.6}$		14.51/13
01/08/2004	PN	$0.27_{0.05}^{0.05}$	$0.24_{0.01}^{0.04}$	$4.4_{0.2}^{0.2}$	$4.3_{0.2}^{0.2}$	10.8^4_{28}	$8.12^{0}_{6.7}$	184.56/176
01/16/2004	PN/M1/M2	$0.14_{0.07}^{0.1}$	$0.22_{0.05}^{0.04}$	$1.9_{0.1}^{0.2}$	6.0.2	$9.29_{3.6}^{1.3}$		195.10/198
05/01/2004	M1/M2	$0.12_{0.08}^{0.06}$	$0.17_{0.04}^{0.05}$	$3.2_{0.2}^{0.3}$	$5.6_{0.3}^{0.3}$	$5.83_{2.7}^{4.1}$		106.03/103
06/05/2004	PN	$0.13_{0.03}^{0.04}$	$0.23_{0.02}^{0.02}$	$1.7_{0.04}^{0.1}$	$7.1_{0.1}^{0.1}$	14.0_{3}^{3}		512.21/544
08/23/2004	PN/M1/M2	$0.24_{0.01}^{0.01}$	$0.15\substack{0.007\\0.007}$	$2.6_{0.1}^{0.1}$	$3.7_{0.1}^{0.1}$	$5.5^{1.3}_{1.1}$		234.06/233
11/23/2004	M1/M2	$\begin{array}{c} 0.11 \overset{0.04}{_{0.05}} \\ 0.29 \overset{0.04}{_{0.04}} \end{array}$	$\begin{array}{c} 0.18\substack{0.03\\0.03}\\0.208\substack{0.005\\0.005}\end{array}$	$3.22_{0.2}^{0.2}$	$5.53_{0}^{0.}$			181.82/185
02/07/2005	PN/M1/M2	$0.29_{0.04}^{0.04}$	$0.208_{0.005}^{0.005}$	$2.71_{0.0}^{0.2}$	$6 7.0^{0.2}_{0.2}$	$8.93_{1.9}^{2.5}$	$2.68_1^{1.5}$	313.10/305
03/06/2006	PN	$0.24_{0.05}^{0.05}$	$0.28^{0.01}_{0.01}$	$1.17_{0.0}^{0.5}$	$12.3^{0.}_{0.6}$	$4.7^{1.9}_{1.2}$	$1.28^{1.2}_{6.3}$	169.35/139
10/16/2006	PN/M1/M2	$0.25_{0.01}^{0.01}$	$0.228_{0.002}^{0.002}$	$2.08_{0.0}^{0.0}$	6_1 8.65 ${}^{0.0}_{0.0}$	${}^{6}_{6}$ 7.00 ${}^{0.05}_{0.05}$	$2.0_{0.3}^{0.3}$	1624.29/1481
				X-1	(with e	gtherm)		
					(4)		
Obs.ID	Instruments	nH	kT_{disk}	l_h/l_s	au	0.3-10 KeV L_x	$0.3-10 \text{ KeV } L_{disk}$	χ^2/dof
		$(10^{22} \ part/cm^2)$	(KeV)			$(10^{39} \text{ erg/sec})$	$(10^{39} \text{ erg/sec})$	
10/17/2000	PN/M1/M2	$0.21_{0.04}^{0.03}$	$0.27_{0.1}^{0.2}$	2.05	$9.43_{0.2}^{0.2}$	$7.2^{1.3}_{0.7}$	$2.2^{1.1}_{0.5}$	690.95/695
11/25/2003	M1/M2	$0.17\substack{+0.05\\-0.04}$	$0.12\substack{0.2\\0.2}$	1.18	$11.1_{0.9}^{1.0}$	$11.0^{2.5}_{1.7}$		22.98/38
12/21/2003	PN	$0.21_{0.05}^{0.06}$	$0.20^{0.1}_{0.1}$	0.54	$5.8_{0.2}^{0.2}$	$12.0^{2.1}_{2.9}$		198.04/226
12/23/2003	PN	$0.35_{0.02}^{0.02}$	$0.19_{0.4}^{0.3}$	4.02	$0.9_{0.3}^{0.3}$	$13.0^{\overline{2.2}}_{1.7}$		69.25/75
12/25/2003	PN	$0.13\substack{0.02\\0.02}$	$0.30^{0.3}_{0.2}$	2.45	$11.2_{0.4}^{0.4}$	$8.5_{1.1}^{1.7}$		15.56/11
01/08/2004	PN	$0.20\substack{+0.05\\-0.05}$	$0.24_{0.1}^{0.2}$	1.29	$29.9_{0.2}^{0.2}$	$9.7^{2.1}_{1.2}$	$1.3^{1.2}_{0.8}$	183.05/175
01/16/2004	PN/M1/M2	$0.21_{0.05}^{0.06}$	$0.20^{0.1}_{0.2}$	2.21	$15.8_{0.3}^{0.3}$	$9.1^{3.4}_{1.5}$		194.96/197
05/01/2004	M1/M2	0	0	0	0	0	0	
06/05/2004	PN	$0.21\substack{0.03\\ 0.04}$	$0.20\substack{0.1\\0.1}$	2.25	$3.8_{0.2}^{0.2}$	$14.2_{1.8}^{1.8}$		249.98/262
08/23/2004	PN/M1/M2	$0.23\substack{0.03\\0.03}$	$0.17\substack{0.5\\0.4}$	1.08	$10.6_{0.2}^{0.2}$	$4.3^{1.4}_{0.9}$		242.40/232
11/23/2004	M1/M2	$0.18\substack{+0.01\\-0.01}$	$0.23_{0.2}^{0.3}$	1.67	$1.03_{0.1}^{0.1}$	$8.0^{1.1}_{0.6}$		167.41/184
02/07/2005	PN/M1/M2	$0.30\substack{0.05\\0.04}$	$0.21\substack{0.3\\0.5}$	5.86	$0.78_{0.2}^{0.2}$	$9.4_{1.6}^{2.2}$	$3.1_{1.4}^{3.7}$	313.44/304
03/06/2006	PN	$0.25\substack{0.06\\0.04}$	$0.31_{0.2}^{0.2}$	2.17	$1.11_{0.2}^{0.2}$	$4.8^{2.5}_{1.9}$	$1.43_3^{7.8}$	171.42/138
10/16/2006	PN/M1/M2	$0.25_{0.02}^{0.02}$	$0.24_{0.1}^{0.1}$	1.18	$9.41_{0.1}^{0.1}$	$6.7_{0.7}^{0.9}$	$2.02_{0.09}^{0.13}$	625.67/1480

Fit with the tbabs*tbabs*(eqtherm+diskbb) model

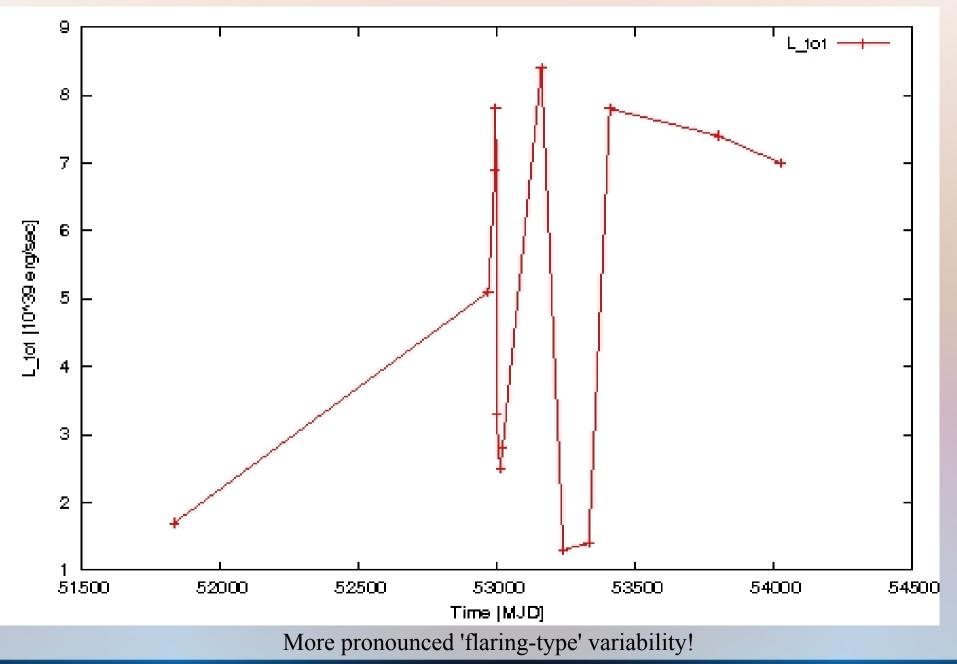
X-2

normalized counts s⁻¹ keV⁻¹

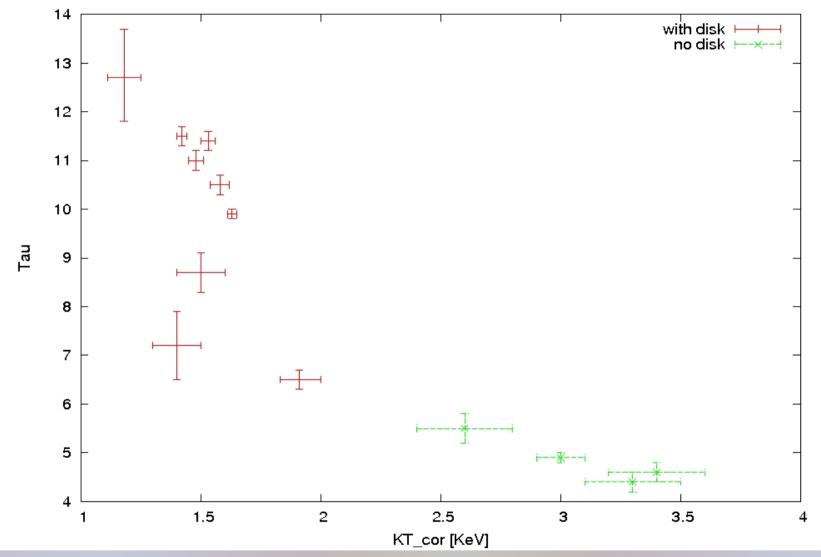

 \approx

pintore 20-May-201012:55

X-2 (with comptt)								
Obs.ID	Instruments	nH	kT_{disk}	kT _{corona}	au	0.3-10 KeV L_x	$0.3-10 \text{ KeV } L_{disk}$	χ^2/dof
10/17/2000	DN	$(10^{22} part/cm^2)$	(KeV)	(KeV)	4 40.2	$(10^{39} \text{ erg/sec})$	$(10^{38} \text{ erg/sec})$	1 41 90 /1 49
$\frac{10}{17}/2000}{11}/25/2003}$	PN PN/M1/M2	$\begin{matrix} 0.14^{0.06}_{0.06} \\ 0.03^{0.02}_{0.02} \end{matrix}$	$0.17^{0.03}_{0.04} \\ 0.26^{0.05}_{0.04}$	$3.33^{0.2}_{0.2}$ $1.18^{0.07}_{0.07}$	$\begin{array}{c} 4.4^{0.2}_{0.2} \\ 12.7^{1}_{0.9} \end{array}$	${\begin{array}{c} 1.7^{1.3}_{0.7} \\ 5.1^{2.5}_{1.7} \end{array}}$	$5.6^{1.7}$	141.86/143 35.57/36
12/21/2003	PN/M1/M2 PN/M1/M2	$0.03_{0.02} \\ 0.13_{0.01}^{0.04}$	$0.20_{0.04}$ $0.29_{0.05}^{0.06}$	$1.18_{0.07}$ $1.58_{0.04}^{0.04}$	$12.7_{0.9}$ $10.5_{0.2}^{0.2}$	$5.1_{1.7}$ $7.1_{2.9}^{2.1}$	$5.0^{7.8}_{13.4}$	386.29/395
12/23/2003	PN/M1/M2	$0.04_{0.02}^{0.02}$	$0.27_{0.02}^{0.02}$	$1.69_{0.06}^{0.04}$	$10.2_{0.3}^{0.3}$	$7.6^{2.2}_{1.7}$		245.35/249
12/25/2003	PN/M1/M2	$0.15_{0.04}^{0.04}$	$0.30_{0.02}^{0.02}$	$1.5_{0.1}^{0.1}$	$8.7_{0.4}^{0.4}$	$3.5_{1.1}^{1.7}$	$7.4_{4.5}^{0.8}$	100.41/120
01/08/2004	PN/M1/M2	$0.13_{0.02}^{0.02}$	$0.25_{0.05}^{0.05}$	$1.91\substack{+0.09\\-0.08}$	$6.5_{0.2}^{0.2}$	$2.7^{2.1}_{1.2}$	$3.6^{5.6}_{2.6}$	175.30/201
01/16/2004	PN/M1/M2	$0.13_{ m 0.1}^{ m 0.08}$	$0.17_{0.05}^{0.06}$	$2.6_{0.2}^{0.2}$	$5.5^{0.3}_{0.3}$	$2.5_{1.5}^{3.4}$		85.33/86
05/01/2004	M1/M2	$0.10^{0.09}_{0.09}$	$0.38_{0.1}^{0.4}$	$1.4_{0.1}^{0.1}$	$7.2_{0.7}^{0.7}$	$1.8^{1}_{1.3}$	$6.3^{1.1}_{5.9}$	55.41/46
06/05/2004	PN/M1/M2	$0.14_{0.03}^{0.04}$	$0.23_{0.04}^{0.04}$	$1.48_{0.03}^{0.03}$	$11.0^{0.2}_{0.2}$	$8.2^{1.8}_{1.8}_{1.8}_{1.001.4}$	$1.4_{1.0}^{2.1}$	515.23/507
$\frac{08/23/2004}{11/23/2004}$	PN/M1/M2 PN/M1/M2	$\begin{array}{c} 0.14\substack{0.04\\ 0.05}\\ 0.14\substack{0.04\\ 0.05}\end{array}$	$\begin{array}{c} 0.15\substack{0.03\\ 0.03}\\ 0.17\substack{0.01\\ 0.01} \end{array}$	$3.4^{0.2}_{0.2}$ $3.00^{0.1}_{0.1}$	$\begin{array}{c} 4.6^{0.2}_{0.2} \\ 4.9^{0.1}_{0.1} \end{array}$	${\begin{array}{c}{1.99_{0.9}^{1.4}}\\{2.1_{0.65}^{1.1}}\end{array}}$		162.21/132 215.02/238
02/07/2005	PN/M1/M2 PN/M1/M2	$0.14_{0.05}$ $0.10_{0.01}^{0.02}$	$0.17_{0.01} \\ 0.27_{0.04}^{0.05}$	$1.53_{0.03}^{0.03}$	$4.9_{0.1}$ $11.4_{0.2}^{0.2}$	$7.7^{2.2}_{1.6}$	$2.4_{1.4}^{3.7}$	491.14/486
03/06/2006	PN/M1/M2	$0.15_{0.01}^{0.04}$	$0.29_{0.04}^{0.04}$	$1.42_{0.02}^{0.03}$	11.40.2 11.5.30.2	$7.5^{2.5}_{1.9}$	$5.1^{7.8}_{3}$	577.03/603
10/16/2006	PN	$0.141_{0.007}^{0.01}$	$0.24_{0.02}^{0.04}$	$1.63_{0.02}^{0.02}$	$9.8^{0.1}_{0.1}$	$6.8_{0.8}^{0.9}$	$2.5^{1.3}_{0.9}$	843.58/854
				X-2	(with eq			
Obs.ID	Instruments	nH	kT_{disk}	l_h/l_s	au	20	$0.3-10$ KeV L_{disk}	χ^2/dof
		$(10^{22} \ part/cm^2)$	(KeV)		0.0	$(10^{39} \text{ erg/sec})$	$(10^{39} m erg/sec)$	
10/17/2000		$0.16_{0.02}^{0.02}$	$0.20_{0.04}^{0.03}$		$1.3_{0.2}^{0.2}$	$1.7^{1.3}_{0.7}$		139.38/145
11/25/2003	PN/M1/M2		$0.20_{0.04}^{0.05}$	1.93	$26.3^{1.0}_{0.9}$	$5.1_{1.7}^{2.5}$		58.86/62
12/21/2003	PN/M1/M2		$0.32_{0.05}^{0.06}$	1.49	$19.2_{0.2}^{0.2}$	$6.9^{2.1}_{2.9}$	$6.1_{3.4}^{7.8}$	385.68/394
12/23/2003			$0.23_{0.02}^{0.02}$	2.09	$18.8_{0.3}^{0.3}$	$7.8^{2.2}_{1.7}$		245.73/248
12/25/2003	PN/M1/M2		$0.29_{0.02}^{0.02}$	1.06	$14.4_{0.4}^{0.4}$	$3.3^{1.7}_{1.1}$	$5.5_{4.5}^{0.8}$	101.48/119
01/08/2004	PN/M1/M2	$0.17_{0.02}^{0.02}$	$0.22_{0.05}^{0.05}$	1.04	$11.6_{0.2}^{0.2}$	$2.5^{2.1}_{1.2}$	$2.6^{5.6}_{2.6}$	252.41/200
01/16/2004	PN/M1/M2		$0.17_{0.05}^{0.06}$	1.49	$7.76_{0.3}^{0.3}$	$2.8_{1.5}^{3.4}$		85.49/85
05/01/2004	M1/M2	0	0	0	0	0	0	
06/05/2004	PN/M1/M2	$0.21_{0.02}^{0.03}$	$0.23_{0.04}^{0.03}$	1.87	$20.5_{0.2}^{0.2}$	$8.4_{1.8}^{1.8}$	$4.2^{2.1}_{1}$	287.60/270
08/23/2004	PN/M1/M2		$0.19_{0.03}^{0.03}$		$0.6_{0.2}^{0.2}$	$1.3_{0.9}^{1.4}$		150.99/131
11/23/2004	PN/M1/M2		$0.21_{0.01}^{0.01}$	1.61	$1.2^{0.1}_{0.1}$	$1.4^{1.1}_{0.6}$		211.11/237
02/07/2005	PN/M1/M2		$0.25_{0.04}^{0.05}$	1.96	$21.9^{0.2}_{0.2}$	$7.8^{2.2}_{1.6}$	$3.0^{3.7}_{1.4}$	489.36/485
03/06/2006	PN/M1/M2		$0.31_{0.04}^{0.06}$	1.47	$22.7^{0.2}_{0.2}$	$7.4_{1.9}^{2.5}$	$6.5_3^{7.8}$	578.54/602
10/16/2006	PN	$0.18_{0.02}^{0.02}$	$0.28_{0.02}^{0.02}$	1.59	$18.0^{0.1}_{0.1}$	$7.1^{0.9}_{0.7}$	$4.6_{0.09}^{0.13}$	827.48/853


LIGHT CURVE

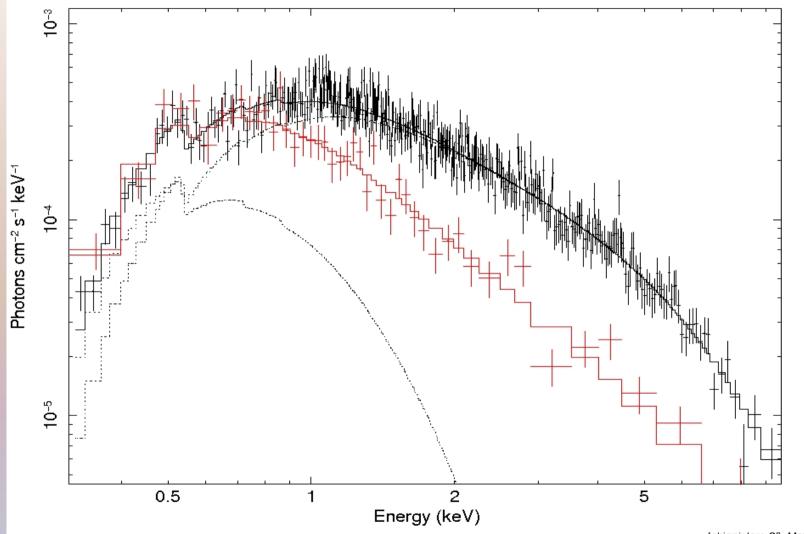
X-1



LIGHT CURVE

X-2

'HIGH'/'LOW' STATE (X-2, with COMPTT)

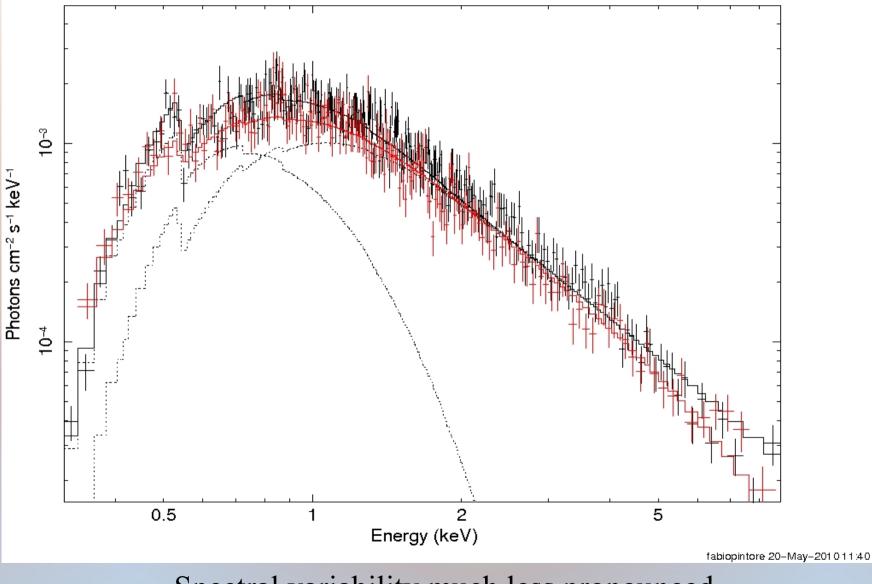


 'HIGH' STATE: low temperature (~1.5 keV) and large optical depths (~10); a disc component is usually needed;

 - 'LOW' STATE: higher temperature (~3 keV) and lower optical depths (~5); no disc component;

'High/low' state spectra of X-2

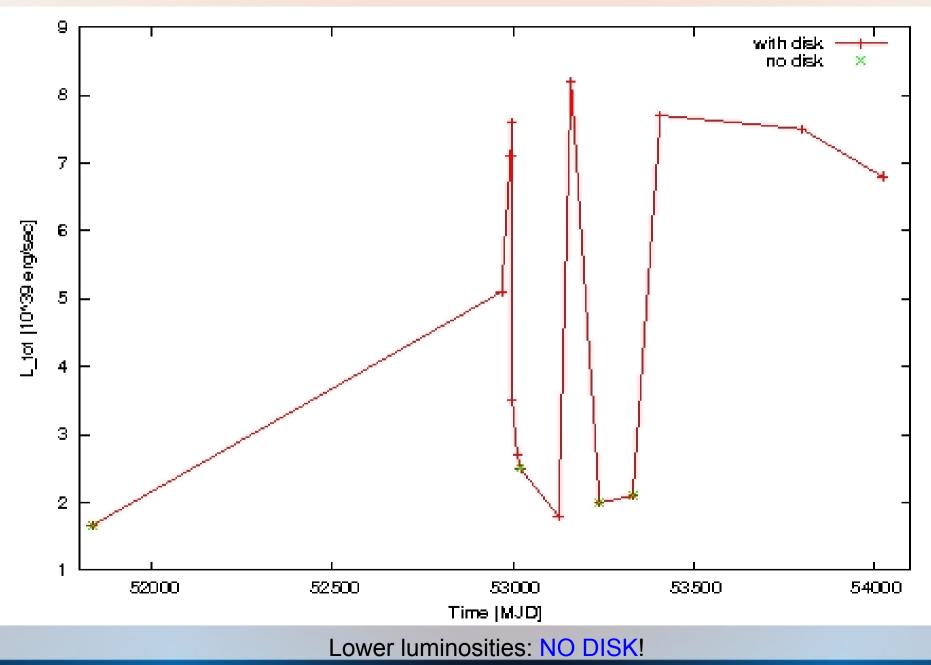
Unfolded Spectrum

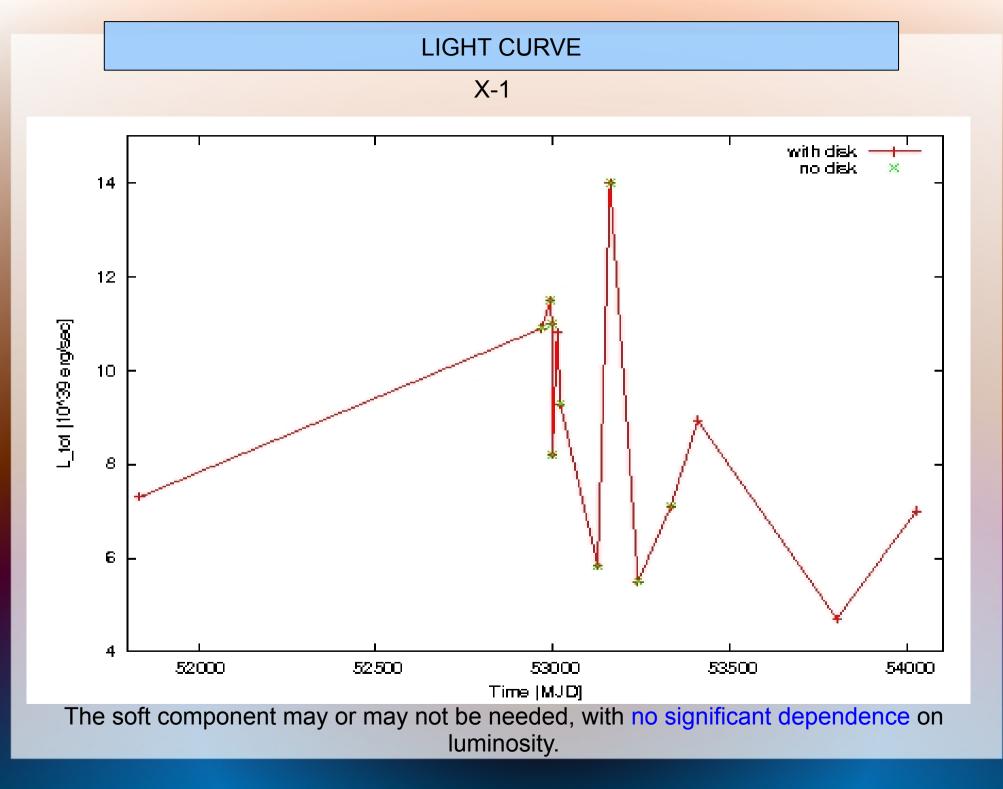


fabiopintore 20-May-201011:12

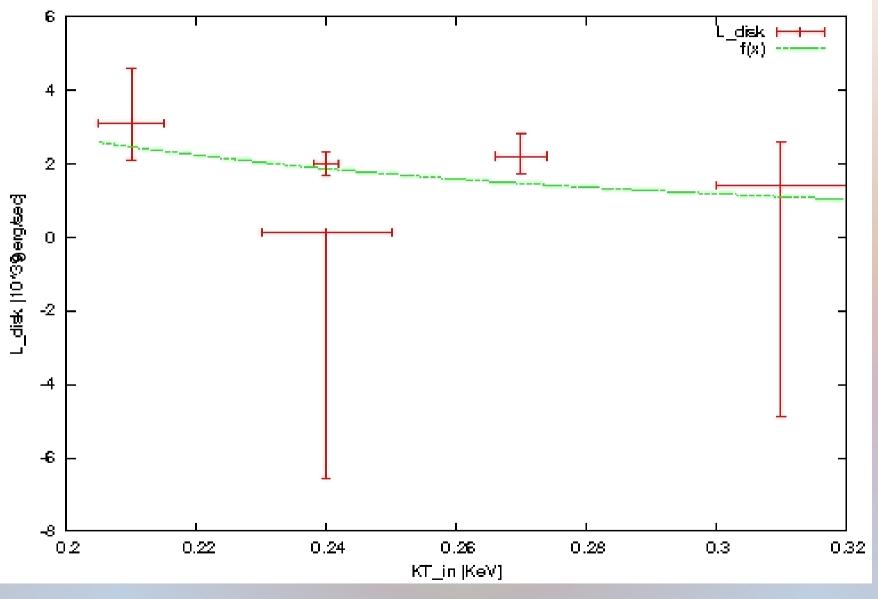
Comparison between spectra in the 'high'/'low' state. Evidence of a break at high luminosity. ~50% of the total luminosity is in the soft component. High energy tail shows opposite behaviour with respect to high/low state transitions in Galactic BH binaries.

Spectral variability in X-1

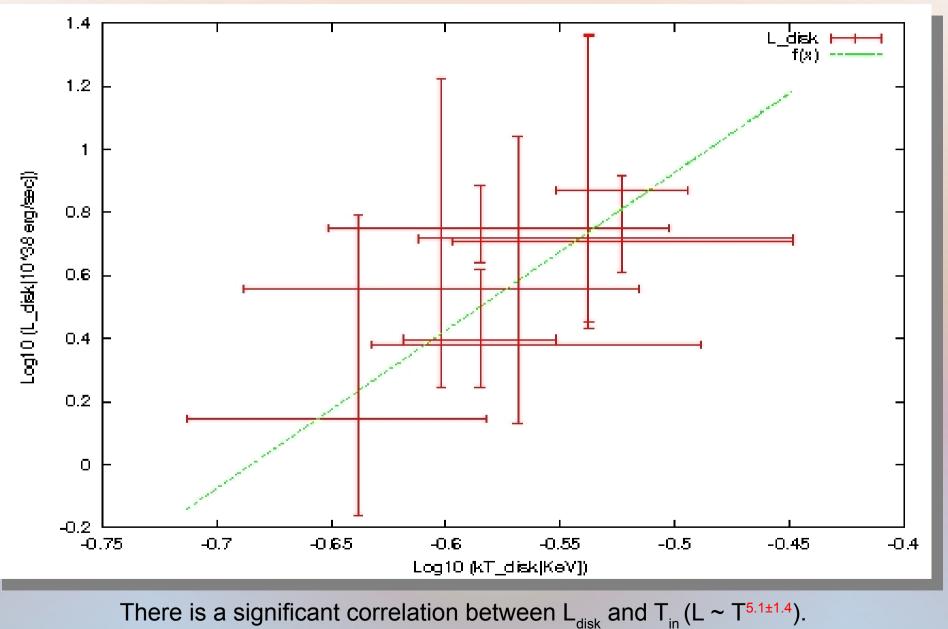

Unfolded Spectrum



Spectral variability much less pronounced.

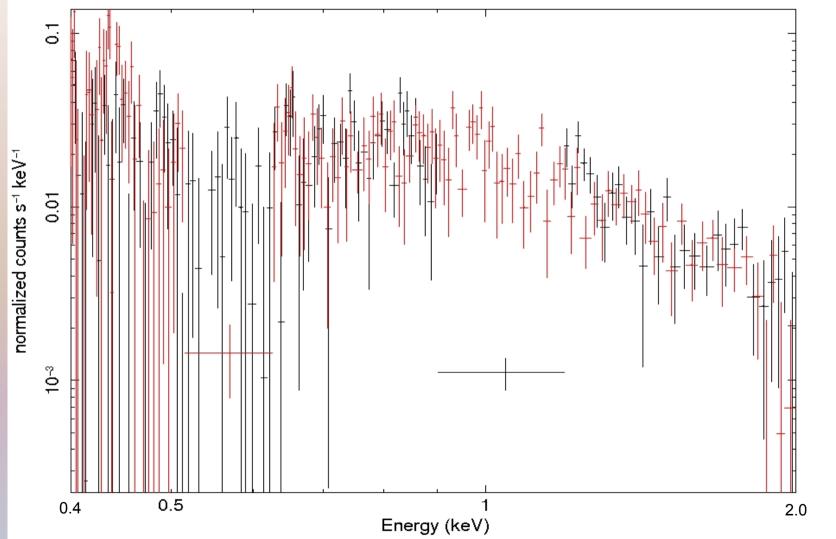

LIGHT CURVE

X-2



Ldisk vs KT_disk (X-1, with EQTHERM)

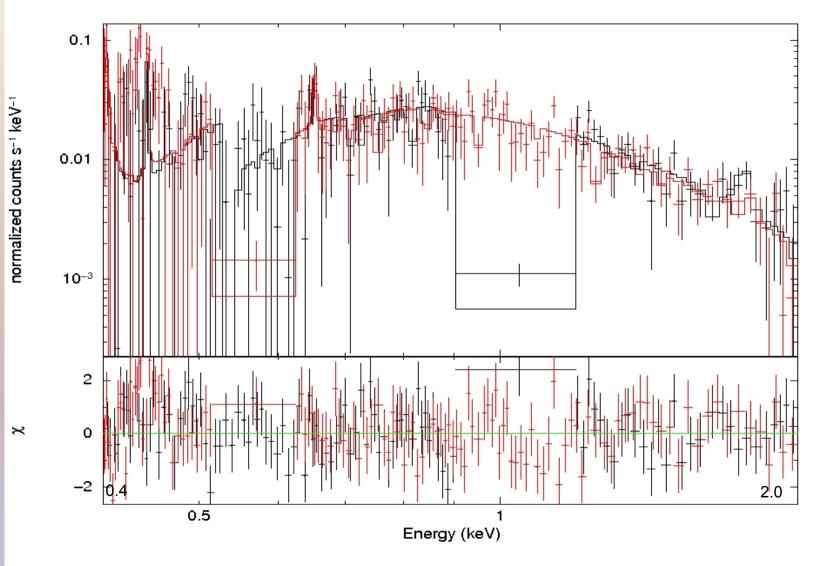
NO significant correlation (L ~ T^{-0.2±5})!!!


Ldisk vs KT_disk (X-2, with COMPTT)

With the EQTHERM model we find $(L \sim T^{2.1\pm0.5})$;

RGS ANALISYS FOR X-1

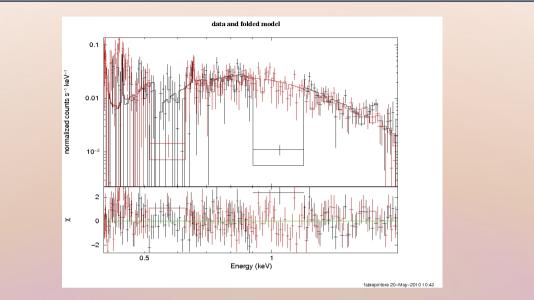
data



fabiopintore 20-May-201010:45

We re-fitted the EPIC-pn continuum using the tbyarabs model, that allows to vary the chemical abundances and we found approximately solar abundances. Then we fitted the RGS data with the EPIC-pn continuum in which the O and Fe abundances are fixed to 0.

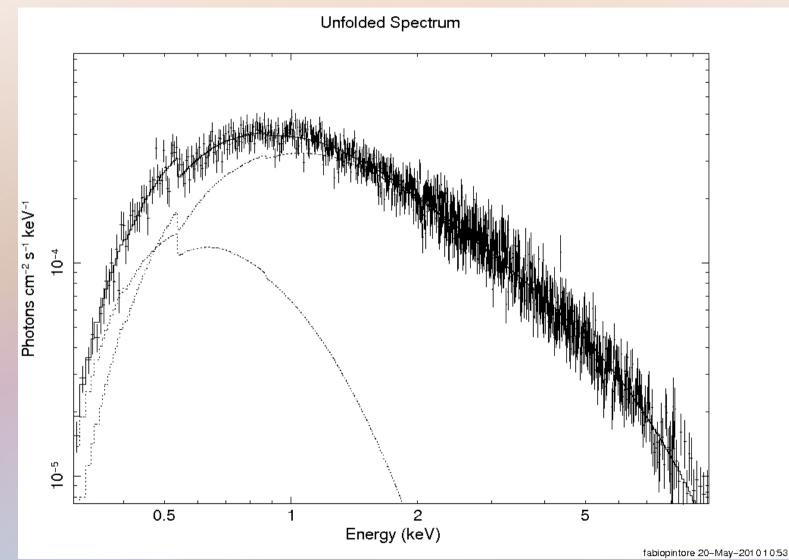
RGS ANALISYS FOR X-1


data and folded model

fabiopintore 20-May-201010:43

We find 4 lines, two of them in absorption. The line at 1.74 KeV (Si) is instrumental.

RGS ANALISYS FOR X-1



Lines	Energy (KeV)	Normalization $(photons/cm^{-2}s^{-1})$
O I (1s-1s2p)	0.535 ± 0.001	$(-5.2\pm0.2)\cdot10^{-5}$
Fe I	0.709 ± 0.001	$(-1.2 \pm 0.2) \cdot 10^{-5}$
instrumental(Si)	1.748 ± 0.001	$(1.3\pm0.1)\cdot10^{-5}$
O VIII	0.653 ± 0.001	$(2.5\pm0.2)\cdot10^{-5}$
Edge	Energy (KeV)	Absorption depth
$Oxygen_{K-edge}$	0.536 ± 0.005	0.63 ± 0.01

From the edge, we find an abundances for Oxygen slightly above solar (1.3 solar metallicity).

ABUNDANCES IN X-2

If the O and Fe abundances are left free, the fit of the EPIC-pn spectrum gives sub-solar abundances;

The Oxygen abundance is 0.5 solar, while the Fe abundance is very low (consistent with zero).

CONCLUSIONS

We re-analysed in a homogeneous way all the XMM-Newton spectra of NGC1313 X-1 and X-2 using a disc plus comptonizing corona model:

- X-1: disc component needed only in some observations;
 - no correlation between disc luminosity and temperature;
 - this source may be entering the ultraluminous regime (Gladstone et al.2009),with a corona mass-loaded by a wind launched from a disc accreting at super-Eddington rates;

CONCLUSIONS

We re-analysed in a homogeneous way all the XMM-Newton spectra of NGC1313 X-1 and X-2 using a disc plus comptonizing corona model:

- X-1: disc component needed only in some observations;
 - no correlation between disc luminosity and temperature;
 - this source may be entering the ultraluminous regime (Gladstone et al.2009),with a corona mass-loaded by a wind launched from a disc accreting at super-Eddington rates;
- X-2: disc component present in the majority of the observations;
 - we found a correlation between the luminosity and temperature of the soft disc component;
 - possibly two spectral states;

'high' state: the corona becomes denser and, at the same time, shrinks uncovering part of the disc;

'low' state: the corona is hotter and more extended, covering a larger fraction of the disc;

CONCLUSIONS

We re-analysed in a homogeneous way all the XMM-Newton spectra of NGC1313 X-1 and X-2 using a disc plus comptonizing corona model:

- X-1: disc component needed only in some observations;
 - no correlation between disc luminosity and temperature;
 - this source may be entering the ultraluminous regime (Gladstone et al.2009),with a corona mass-loaded by a wind launched from a disc accreting at super-Eddington rates;
- X-2: disc component present in the majority of the observations;
 - we found a correlation between the luminosity and temperature of the soft disc component;
 - possibly two spectral states;

'high' state: the corona becomes denser and, at the same time, shrinks uncovering part of the disc;

'low' state: the corona is hotter and more extended, covering a larger fraction of the disc;

Analysis of the RGS spectra appears to indicate that the environment of X-1 has typical solar abundance. On the other hand, fits with tbvarabs suggests sub-solar metallicity in the environment of X-2.

THANKS FOR THE ATTENTION