X-ray emission from star-forming galaxies

Stefano Mineo, Marat Gilfanov & Rashid Sunyaev

(Max Planck Institute for Astrophysics)

Ultra-Luminous X-ray sources and Middle Weight Black Holes Monday May 24th, 2010 - ESAC Madrid

Science goals

- L_X-SFR relation for compact sources and diffuse gas
- luminosity function of high-mass X-ray binaries (HMXBs)
- ultra-luminous X-ray sources (ULXs)

2MASS

FIR

70µm

24µm

2.16µm

Spitzer

Motivation

PREVIOUS WORKS:

Grimm et al. (2003), Ranalli et al. (2003), Gilfanov et al. (2004), Persic et al (2004), Shtykovskiy & Gilfanov (2005), Persic & Rephaeli (2007)

- discrepancy between L_X -SFR calibrations derived by different authors
- \bullet presence of dispersion around Lx-SFR relation
- compilation of X-ray data and inhomogeneous SFR estimators

NOWADAYS:

large number of galaxies available in the archives of Chandra, Spitzer and GALEX

uniform and large sample of star-forming galaxies significative improvement of statistics homogeneous SFR estimators

- \bullet dispersion around the Lx-SFR relation found in earlier studies
- how many NS and BH end up in a binary system?
- \bullet are there features at the L_{Edd} of NS and BH systems?
- constrain the shape of the luminosity distribution of ULXs

Sample selection

Sample selection criteria

- Hubble Type: T > 0 (S and Irr) \Rightarrow star-forming
- specific SFR: $\frac{SFR}{M_{\star}} > 1 \times 10^{-10} \text{yr}^{-1} \Rightarrow \text{HMXB dominated}$ $T_{\text{HMXB}} \sim 10\text{-}50 \text{ Myr} \Rightarrow N_{\text{HMXB}} \propto \text{SFR}$ (Grimm, Gilfanov & Sunyaev 2003) $T_{\text{LMXB}} \sim 1\text{-}10 \text{ Gyr} \Rightarrow N_{\text{LMXB}} \propto M_{\bigstar}$ (Gilfanov 2004)
- X-ray source detection sensitivity: $L_{lim} < 5 \times 10^{37} \text{ erg/s}$

• distance: Resolved galaxies: D < 30 Mpc, discriminate AGN, low SFR, $L_{TOT}=\Sigma L_i \Rightarrow 29$ galaxies Unresolved galaxies: D > 100 Mpc, high SFR, spectra $\Rightarrow 8$ galaxies (5 ULIRGs, 2 LIRGs)

> 37 star-forming galaxies 0.1 < SFR < 400 M_{sun}/yr ~700 resolved HMXBs

Spatial analysis: minimizing the CXB contribution

central regions high surface density of XRBs negligible contribution of CXB sources NGC3556 0.5 **DIFFERENTIAL src radial distribution** $(N/arcmin^2)$ 0 log predicted CXB level -0.5CXB level by Georgakakis et al. (2008) 2 6 10 4 R (arcmin) outer regions surface density of XRBs ~ average density of CXB sources

Bulge exclusion: minimizing the LMXB contribution

Stefano Mineo

XMM Newton Science Workshop - Monday, May 24th, 2010 - ESAC Madrid

XMM Newton Science Workshop - Monday, May 24th, 2010 - ESAC Madrid

Part I L_X-SFR relation for HMXBs

SFR estimators

(see Kennicutt 1998 for a review):

UV continuum, recombination lines (H_{α}), forbidden lines ([OII]), IR continuum, thermal radio emission (Condon 1992)

$$SFR_{TOT} = SFR_{UV}^0 + (1 - \eta) \times SFR_{IR}$$

 $\eta = \begin{cases} 0 & \text{for Starburst galaxies} \\ 0.4 & \text{for normal disk galaxies} \end{cases}$

Hirashita et al. (2003), Bell (2003), Iglesias-Paramo et al. (2006) [Salpeter IMF, 0.1-100 Msun]

• UV
$$\Rightarrow$$
 SFR_{UV} $(M_{\odot} \text{yr}^{-1}) = 1.4 \times 10^{-28} L_{\nu} (\text{erg/s/Hz})$

+ originates in the atmospheres of stars younger than $10^7 - 10^8$ yr

- attenuated by dust surrounding the young stars

•
$$\mathbf{IR} \Rightarrow SFR_{IR}(M_{\odot}yr^{-1}) = 4.5 \times 10^{-44}L(8 - 1000\mu m)(erg/s)$$

+ absorbs most of the UV photons and reemits them at IR wavelength

- unknown fraction of escaping UV photons

• X-ray:

- + not affected by absorption
- + independent estimator
- AGN, gas and LMXB contribution to X-ray luminosity

Stefano Mineo

The L_X-SFR relation

 $L_{0.5-8keV}(erg/s) = 2.0 \times 10^{39} SFR_{TOT}(M_{\odot} yr^{-1})$

Stefano Mineo

XMM Newton Science Workshop - Monday, May 24th, 2010 - ESAC Madrid

Dispersion: data reduction?

sensitivity limit

 L_X -SFR relation: $L_X = L_{0.5-8keV}$ (>10³⁶ erg/s)

XMM Newton Science Workshop - Monday, May 24th, 2010 - ESAC Madrid

Dispersion: CXB/LMXB contamination?

sample galaxies free of CXB and LMXB contamination

Dispersion: accuracy of SFR estimators?

scatter lower than that observed in the Lx-SFR relation

Dispersion: physical?

oxygen abund./metallicity

also we will search for stellar age/colors effects

Dispersion: physical?

dust attenuation effects ?

in order to attenuate the L(0.5-8 keV) by one order of magnitude a $n_H \sim 10^{23}$ cm⁻² is needed!

XMM Newton Science Workshop - Monday, May 24th, 2010 - ESAC Madrid

Dispersion: physical?

galaxy inclination

Part II Luminosity function of HMXBs

X-ray point source luminosity function

XMM Newton Science Workshop - Monday, May 24th, 2010 - ESAC Madrid

Combined luminosity function

XMM Newton Science Workshop - Monday, May 24th, 2010 - ESAC Madrid

Combined luminosity function and SFR

XMM Newton Science Workshop - Monday, May 24th, 2010 - ESAC Madrid

Conclusions

- L_X-SFR relation in agreement with previous results Grimm et a. (2003), Ranalli et al. (2003)
- confirmed presence of the dispersion around L_X-SFR relation seen in previous works \Rightarrow must be physical
- \bullet first evidence of a change of the slope of the HMXB luminosity function near to L_{Edd} of a 10 Msun BH

Future work

- L_X-SFR relation for high-redshift galaxies (using Chandra deep fields)
- extending the sample to include spatially resolved high-SFR galaxies that potentially host ULXs
- relation between SFR and X-ray luminosity of diffuse gas

Stefano Mineo

Thank you for your attention!