ULXs and Accretion Flow Models

Shin Mineshige (Kyoto) & Ken Ohsuga (NAOJ)

Magnetic tower jet by RMHD simulation (S. Takeuchi et al.)

Outline

Introduction

- Basics of supercritical (super-Eddington) accretion
- Photon trapping and outflow

Global radiation-hydrodynamic simulations

- Significant radiation anisotropy
- Outflow properties

Model fits to ULXs & a microquasar

- Spectral model
- Spectral fits to ULXs & GRS1915+105

Global radiation-magnetohydrodynamic simulations

- Three different regimes of accretion flow
- Magnetized, radiation driven jet

Outline

Introduction

- Basics of supercritical (super-Eddington) accretion
- Photon trapping and outflow

Global radiation-hydrodynamic simulations

- Significant radiation anisotropy
- Outflow properties

Model fits to ULXs & a microquasar

- Spectral model
- Spectral fits to ULXs & GRS1915+105
- Global radiation-magnetohydrodynamic simulations
 - Three different regimes of accretion flow
 - Magnetized, radiation driven jet

Disk accretion can achieve L>L_E

The Eddington luminosity, the classical limit of spherically accreting system, can be exceeded in disk accretion (Abramowicz et al. 1988, Begelman 2002).

Key process 1. Outflow

(Shakura & Sunyaev 1973; Poutanen et al. 2007)

Significant outflow from disk surface

Radiation pressure-driven outflow inevitably occurs.

• Critical radius = spherization radius: $R_{sp} \sim (\dot{M}c^2/L_E) r_s$

• Inside this radius: flatter T profile: $T \propto r^{-1/2}$

Key process 2. Photon trapping

Begelman (1978), Ohsuga et al. (2002)

Photon trapping within disk

Photons are trapped within luminous accretion flow.

• Critical radius = trapping radius: $R_{trap} \sim (\dot{M}c^2/L_E)(H/r) r_s$ • Inside this radius: flatter T profile: $T \propto r^{-1/2}$

©K. Ohsuga

Outline

Introduction

- Basics of supercritical (super-Eddington) accretion
- Photon trapping and outflow

Global radiation-hydrodynamic simulations

- Significant radiation anisotropy
- Outflow properties

Model fits to ULXs & a microquasar

- Spectral model
- Spectral fits to ULXs & GRS1915+105
- Global radiation-magnetohydrodynamic simulations
 - Three different regimes of accretion flow
 - Magnetized, radiation driven jet

Why 2D RHD simulations?

One-dimensional models (e.g. standard disk, slim disk, ADAF) are quite useful for understanding the basics of different modes of accretion. However...

- Multi-dimensional gas motions (e.g., circulation, convection, outflow...) are totally neglected.
 → Need 2D/3D simulations
- Strong radiation-matter interactions expected in high luminosity states are not properly treated. → Need radiation hydrodynamics

We thus need 2D/3D RHD disk simulations.

Overview of supercritical flow

Ohsuga et al. (2005)

• First simulations of supercritical accretion flows in quasi-steady regimes under flux-limited diffusion and α viscosity (α =0.1).

Super-Eddington luminosity is realized

No limit on the accretion rate!

Ohsuga (2007, ApJ 659, 205)

Slim disks with outflow

(Takeuchi, S.M. & Ohsuga 2009)

If we include outflow...

 Σ decreases due to mass loss, but T_{eff} unchanged, because (1) T_{eff} is determined by photon trapping at small radii; (2) no outflows appear at large radii.

Two important results

• Flatter temperature profile (T(r) $\propto r^{-p}$ with p<0.75) :

Can be proven by the fitting with the extended disk-blackbody (p-free) model (described later).

- Comptonizing corona with low temperature ($kT_e < 10 keV$) and high optical depth ($\tau > 3$) :
 - → Mass supply mechanism to corona differ; evaporation of disk material in sub-critical regime while P_{rad} driven outflow in supercritical regime.

(If Compton y=[4kT_e/(m_ec²)]($\tau + \tau^2$) ~ 1 as is expected by the energy balance, large $\tau >>1$ leads to low kT_e<<100 keV)

Outline

Introduction

- Basics of supercritical (super-Eddington) accretion
- Photon trapping and outflow

Global radiation-hydrodynamic simulations

- Significant radiation anisotropy
- Outflow properties

Model fits to ULXs & a microquasar

- Spectral model
- Spectral fits to ULXs & GRS1915+105
- Global radiation-magnetohydrodynamic simulations
 - Three different regimes of accretion flow
 - Magnetized, radiation driven jet

Spectral properties

(e.g. Kato et al. 2008)

<u>Disk spectra = multi-color blackbody radiation</u>

Temp. profiles affect spectra: $F_{\nu} \propto \int B_{\nu}(T(r)) 2\pi r dr$

Extended disk-blackbody model

(Mitsuda et al. 1984; Mineshige et al. 1994)

Fitting with superposition of blackbody (B_{ν}) spectra:

$$F_{v} = \cos i \int_{r_{in}}^{r_{out}} B_{v}[T(r)] 2\pi r dr; \quad T(r) = T_{in}(r / r_{in})^{-p}$$

Three fitting parameters:

 T_{in} = temp.of innermost region (~ max. temp.)

 $r_{\rm in}$ = size of the region emitting with $B_{\nu}(T_{\rm in})$

Corrections:

Real inner edge is at $\sim \xi r_{in}$ with $\xi \sim 0.4$ Higher color temp.; $T_c = \kappa T_{in}$ with $\kappa \sim 1.7$

 \Rightarrow Good fits to the Galactic BHs with p=0.75

Spectral fitting: Extended DBB model

(Vierdayanti et al. 2006)

<u>Model fitting, assuming $T \propto r^{-p}$ </u>

We fit the XMM-Newton data of some ULXs

 \Rightarrow high $T_{in} \sim 2.5 \text{ keV}$ and $p = 0.50 \pm 0.03$ (no PL comp.)

Compton-dominated spectra of ULXs

(Gladstone, Roberts, Done 2009)

Spectral Variability in Holmberg IX X-1

Significant spectral variability does clearly appear.

Spectral fitting results in the combination of low T_{in} (~ 0.2 keV), and optically-thick ($\tau > 3$), low T_{e} (< 10 keV) corona.

 T_e decreases as the flux increases while T_{in} remains unchanged (except for the highest flux data).

The properties of Comptonization components are similar to that of BHBs at high mass accretion rate.

(Vierdayanti et al. 2010, MNRAS)

Microquasar, GRS1915+105

(Done et al. 2004)

- The brightest (largest L/L_E) BH binary in our Galaxy; BH mass is 14±4 M_{sun}).
- It exhibits exceptionally complex behavior (both of spectra and timing) difficult to understand in a simple way.
- We focus on data with relatively soft spectra and with little variability.

Low Temperature and Optically Thick Corona

Compton dominated spectra in normal BHBs with low luminosity show $T_{\rm e}$ > 100 keV, $\tau_{\rm e}$ ~1.

Low electron temperature and high electron scattering optical depth are commonly found in high luminosity systems.

(Vierdayanti et al. 2010, PASJ)

Tracks in L-T diagram

(Vierdayanti, Ueda, SM, 2010)

Outline

Introduction

- Basics of supercritical (super-Eddington) accretion
- Photon trapping and outflow

Global radiation-hydrodynamic simulations

- Significant radiation anisotropy
- Outflow properties

Model fits to ULXs & a microquasar

- Spectral model
- Spectral fits to ULXs & GRS1915+105

Global radiation-magnetohydrodynamic simulations

- Three different regimes of accretion flow
- Magnetized, radiation driven jet

Why global RMHD simulations?

- Global RHD simulations exhibited unique features of supercritical accretion. However...
 - Disk viscosity was treated by the phenomenological α model. Its validity needs to be examined.
- Local RMHD simulations were performed and they show well-resolved vertical structure. However...

Global magnetic field coupling, which seems to be essential for creating jets, was ignored.

We thus need global RMHD simulations.

Global 2D RMHD simulations

Ohsuga, SM, et al. (2009, PASJ 61, L7)

- Radiation and MHD processes are both considered.
- Start with <u>a torus threaded weak poloidal fields</u>:

 Three different regimes (ρ₀=density normalization)
 Model A (ρ₀=10⁰ g/cm³) : supercritical (very luminous) state Model B (ρ₀=10⁻⁴ g/cm³) : standard-disk state Model C (ρ₀=10⁻⁸ g/cm³) : radiatively inefficient flow state

Radiation-MHD simulation: model A

New type jet? - RMHD jet

(Takeuchi, SM, Ohsuga, PASJ, submitted)

A "magnetic tower jet" is found in the RMHD simulation. Right: density contours & velocity vectors.

 Supercritical accretion is feasible and is expected to exhibit several distinct observable features, such as super-Eddington luminosity, mild beaming, significant high-speed outflow, hard power-law radiation, etc.

Apparent luminosity can be >~ $10 L_{\rm E}$!!

- Two theoretical expectations, flatter temperature profiles and low-temperature, optically thick Comptonizing corona, seem to be observed in some ULXs and microquasars (e.g. GRS1915+105).
- Global RMHD simulations are in progress. A new type of jet (RMHD jet) is produced at high luminosities.