A statistical study of long-term variability of ultraluminous X-ray sources – M51 & NGC4490/85 – Tessei Yoshida^{1, 2} K. Ebisawa¹, K. Matsushita², M. Tsujimoto¹, & T. Kawaguchi³ ¹ISAS / JAXA ² Tokyo University of Science ³ University of Tsukuba

© NASA

1, Introduction

Our Goal and Approach

Goal : To compare states of Galactic BHBs and those of ULXs.

Difficulties : ULXs are much fainter, and less frequently monitored than Galactic BHBs.

Approach :

- 1, ULXs in nearby galaxies. (< 5 Mpc)
 - -- ULXs are relatively bright.
- 2, ULXs in interacting systems. (5-10 Mpc)
 - -- A number of ULXs is much larger.
 - --> Enable to monitor many ULXs simultaneously.

2, Observations & Analysis

Targets – Optical images (SDSS)

Star formation rate ~4 M_o/year

~4.7 M_o/year

Targets – X-ray images (XMM-Newton)

Observations

Galaxy	Date	Observatory	texp (ks)
M51	2000/06/20	Chandra	14.9
	2001/06/23	Chandra	26.8
	2003/01/15	XMM-Newton	21/19
	2003/08/07	Chandra	48.0
	2005/07/01	XMM-Newton	49/47
	2006/05/20	XMM-Newton	53/52
	2006/05/24	XMM-Newton	37/35
NGC4490/85	2000/11/03	Chandra	19.5
	2002/05/27	XMM-Newton	17/12
	2004/07/29	Chandra	38.5
	2004/11/20	Chandra	39.6

Chandra ... ACIS-S *XMM-Newton* ... MOS/pn

Observations

Galaxy	Date	Observatory	texp (ks)	
M51	2000/06/20	Chandra	14.9	
	2001/06/23	Chandra	26.8	2src
	2003/01/15	XMM-Newton	21/19	×
De	finition .	Chandra	48.0	7 obs
	2005/07/01	XMM-Newton	49/47	
Numbe	r of samples	XMM-Newton	53/52	14Smp
= sourc	e × observa	ation Newton	37/35	
NGC4490/85	2000/11/03	Chandra	19.5	5src
	2002/032	samples	17/12	X
	2004/07/29	Chandra	38.5	4005
	2004/11/20	Chandra	39.6	20smp
Chandra	. ACIS-S	XMM-Newton	MOS	S/pn

			example: M51 source-82
Name (parameters)	Spectral shape	Physical picture	
<mark>Power-law</mark> (Γ, flux)	Power- Iaw	Compto- nization	
Multi-color disk (<i>T</i> _n , flux)	Convex	Standard disk ($L_x \propto T_{in}^4$)	$\approx \begin{array}{c} 2 \\ -2 \\ -2 \end{array}$
Kawaguchi (M _{dot} , M _{BH} , flux)	Convex	Slim disk ($L_x \propto T_{in}^{\beta}$, $\beta < 4$)	$\times \begin{array}{c} 2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ $
Fitting succes	ssful =		$-2 = \frac{1}{1} + \frac{1}{2} +$

I ILLIIIY **JJIUI** [A null hypothesis probability > 5%]

Energy (keV)

3, Results & Discussion

1, Introduction 2, Observations & Analysis 3, Results & Discussion 4, Summary

Results

Results

Discussion (1-1) – Bright state

Discussion (1-1) – Bright state

Discussion (1-1) – Bright state

Discussion (1-2) – Faint state

M51 source-82 within the faint state

Power-law (*Γ*~1.8-2.6)

Reason 1:

None of the samples is explained by the MCD model.

Date	Null Hypothesis probability
2000/06/20	4.4e-2
2001/06/23	5.6e-6
2003/01/15	1.7e-4
2003/08/07	3.3e-5
2005/07/01	3.3e-6
2006/05/20	2.7e-5
2006/05/24	9.4e-3

Reason 2:

No constant BH mass derived by the Kawaguchi model.

Discussion (1-2) – Faint state

M51 source-82 within the faint state

Power-law (*Γ*~1.8-2.6)

Reason 1:

None of the samples is explained by the MCD model.

Null Hypothesis probability
4.4e-2
5.6e-6
1.7e-4
3.3e-5
3.3e-6
2.7e-5
9.4e-3

Reason 2:

No constant BH mass derived by the Kawaguchi model.

Discussion (2) – Relation with Galactic BHBs

Galactic BHBs

<u>ULXs</u>

State name	Eddington ratio	Spectral shape	Model	State name	Eddington ratio	Spectal shape	Model	
Apparent standard state	~0.4	Convex	Slim disk? (Kubota & Makishima 2004)	Bright state	0.58-0.90 (assuming	Convex	Slim disk	
Very high state	>0.2	Power- law like	Γ>2.4 (McClintock & Remillard		of 37 <i>M</i> _o)			
			2006)	Faint state	0.29-0.50	Power-	Г~1.8-2.6	
High-soft state	>0.1	Convex	Standard disk	Standard disk		(assuming	law	
Low-hard state	0.01-0.04	Power- law	$\Gamma \sim 1.7$ (McClintock & Remillard 2006)		the mass of 37 M _☉)			

Discussion (2) – Relation with Galactic BHBs

Galactic BHBs

<u>ULXs</u>

State name	Eddington ratio	Spectral shape	Model	State name	Eddington ratio	Spectal shape	Model
Apparent standard state	~0.4	Convex	Slim disk? (Kubota & Makishima 2004)	Bright state	0.58-0.90 (assuming	Convex	Slim disk
Very high state	>0.2	Power- law like	Γ>2.4 (McClintock & Remillard 2006)		of 37 <i>M</i> _o)		
High-soft state	>0.1	Convex	Standard disk	Faint state	0.29-0.50 (assuming	Power- law	Г~1.8-2.6
Low-hard state	0.01-0.04	Power- law	Γ~1.7 (McClintock & Remillard 2006)		the mass of 37 <i>M</i> _☉)		

Hypothesis-I Hypothesis-II

Discussion (2) – Relation with Galactic BHBs

Galactic BHBs

<u>ULXs</u>

State name	Eddington ratio	Spectral shape	Model	State name	Eddington ratio	Spectal shape	Model
Apparent standard state	~0.4	Convex	Slim disk? (Kubota & Makishima 2004)	Bright state	0.58-0.90 (assuming	Convex	Slim disk
Very high state	>0.2	Power- law like	 Γ>2.4 (McClintock & Remillard 		of 37 <i>M</i> ₀)		
High-soft state	>0.1	Convex	Standard disk	Faint state	0.29-0.50 (assuming	Power- law	Г~1.8-2.6
Low-hard state	0.01-0.04	Power- law	$\Gamma \sim 1.7$ (McClintock & Remillard 2006)		the mass of 37 <i>M</i> _☉)		

Hypothesis-I Hypothesis-II

Discussion (2) – Relation with Galactic BHBs

Galactic BHBs

<u>ULXs</u>

State name	Eddington ratio	Spectral shape	Model		State name	Eddington ratio	Spectal shape	Model	
Apparent standard state	~0.4	Convex	Slim disk? (Kubota & Makishima 2004)	Viim disk? Kubota & Makishima 2004) C>2.4 McClintock & Remillard	Bright state	0.58-0.90 (assuming	Convex	Slim disk	
Very high state	>0.2	Power- law like	Γ>2.4 (McClintock & Remillard		ck ard			of 37 <i>M</i> _☉)	
High-soft state	>0.1	Convex	2006) Standard disk		Faint state	0.29-0.50 (assuming	Power- Iaw	Г~1.8-2.6	
Low-hard state	0.01-0.04	Power- law	Γ~1.7 (McClintock & Remillard 2006)	ock ard			the mass of 37 <i>M</i> _☉)		

Discussion (2) – Relation with Galactic BHBs

Galactic BHBs

<u>ULXs</u>

State name	Eddington ratio	Spectral shape	Model	State name	Eddington ratio	Spectal shape	Model
Apparent standard state	~0.4	Convex	Slim disk? (Kubota & Makishima 2004)	Bright state	0.58-0.90 (assuming	Convex	Slim disk
Very high state	>0.2	Power- law like	Γ>2.4 (McClintock & Remillard 2006)		of 37 <i>M</i> _☉)		
High-soft state	>0.1	Convex	Standard disk	Faint state	0.29-0.50 (assuming	Power- law	Г~1.8-2.6
Low-hard state	0.01-0.04	Power- law	$\Gamma \sim 1.7$ (McClintock & Remillard 2006)		the mass of 37 M _☉)		

ULXs are extreme stellar mass BHs (<40 M_{\odot}) in the two highest luminosity states.

4, Summary

We analyzed the X-ray spectra of seven ULXs in the two interacting galaxy systems M51 and NGC4490/85.

From the luminosity distribution, we define the two state: the bright state and the faint state. The bright state has a convex spectral shape, the faint state has a PL spectral shape.

From NGC4490/85 ULX-8, all the spectra can be reproduced by the Kawaguchi slim disk model with BH mass of $37\pm 2 M_{\odot}$.

We proposed that the bright state of ULXs corresponds to the apparent standard state of Galactic BHBs, and the faint state corresponds to the very high state.

We speculate that ULXs are extreme stellar mass BHs (<40 M_{\odot}) in the two highest luminosity states.

Future Work

We will further investigate the relation between the states of Galactic BHBs and ULXs.

~300 ULXs using Chandra (~800 observations)