OPTICAL VARIABILITY OF THE ULTRALUMINOUS X-RAY SOURCE
NGC1313 X-2

D. Impiombato1, L. Zampieri1, R. Falomo1, F. Grise2, R. Soria3

1INAF, Astronomical Observatory of Padua, Padua, Italy - 2Observatoire Astronomique de Strasbourg, France - 3Mullard Space-Science Laboratory (UCL), Holmbury St. Mary, Dorking, United Kingdom

Introduction
NGC 1313 X-2 is located in the barred spiral galaxy NGC 1313 at a distance of 3.7–4.27 Mpc. Its observed X-ray luminosity varies between a few x1029 erg/s and 3x1030 erg/s in the 0.3–10 keV band (Feng & Kaaret 2006; Mucciarelli et al. 2007). NGC 1313 X-2 has been studied extensively in the X-ray and optical bands. In fact, this is one of the few ULXs with a well-established optical counterpart, that was identified through a chain of efforts (Zampieri et al. 2004; Mucciarelli et al. 2005, 2007; Pakull et al. 2006; Ramsey et al. 2006; Liu et al. 2007).

Recently, Liu et al. (2009) found a possible periodicity of 6.12 ± 0.16 days in the B band light curve of the optical counterpart of NGC 1313 X-2, that was interpreted as the orbital period of the binary system. Three cycles were detected in the B band, while no modulation was found in V. Previous studies carried out on the available HST and VLT observations led to negative results (Grise et al. 2008). More recently, lack of significant photometric variability on a new sequence of VLT observations has been reported by Grise et al. (2009).

Here we present a reanalysis of the joint VLT+FORS1 and HST+WFPC2 photometric observations of NGC 1313 X-2 obtained during 2007-2008.

NGC1313 X-2: VLT+FORS1 and HST+WFPC2 data

NGC 1313 X-2 was observed with VLT+FORS1 between October 2007 and March 2008 (11 epochs; Grise et al. 2009), and with HST+WFPC2 between May and June 2008 (20 epochs; Liu et al. 2009). We re-analyzed the whole dataset in a homogeneous way, looking for the ~6 day periodicity reported by Liu et al. (2009). After performing standard image reduction in the IRAF environment, the star magnitudes were measured using a PSF fitting technique. In order to minimize the effects of possible absolute calibration uncertainties, we decided to perform differential photometry with respect to a nearby field star (on the same chip), brighter than the target and with a low root mean squared variability (0.02).

Figure 1 shows the B band light curve of NGC 1313 X-2 obtained in this way. There is clearly short term variability, likely due to X-ray irradiation. As can be seen from Figure 1, the VLT data have much smaller root mean square variability (~0.04 mag) than the HST ones (~0.1 mag), possibly because the source was in a state of lower activity between October 2007 and March 2008. Overimposed on the short term stochastic variability, the HST+WFPC2 data show also an approximately sinusoidal modulation with a period of 6 days. Fitting to all the VLT+HST dataset (31 observations), the period, amplitude and phase of the sinusoid turn out to be: P = 6.0 ± 0.1 days, A = 0.09 ± 0.01 mag, $\Phi = 57^\circ$ ± 11°. These values are in agreement with those reported by Liu et al. (2009). Although the VLT data alone do not show evidence of periodicity, they appear to be consistent with the sinusoidal modulation of the HST observations. This is confirmed by the agreement of the phase obtained from the best fitting sinusoid of the HST data alone versus that from the whole VLT+HST dataset (see Figure 2).

We reanalyzed also the V band HST+WFPC2 images and found no significant periodic variability.

If the B band modulation is caused mostly by X-ray irradiation, its amplitude is expected to be smaller in the V band. In fact, we found that a sinusoidal modulation with an amplitude up to ~0.06 mag is consistent, within the errors, with the data. The statistical significance of the B band modulation was tested performing a Lomb-Scargle periodogram analysis of all the observations. We found that the modulation is significant only at the ~3 sigma level.

Binning the light curve in 6 bin intervals and performing an epoch folding period search, the 6 days modulation is recovered with a significance slightly larger than 3 sigma (see Figure 3). Although the binned light curve suggests that the periodicity may be there, the low statistical significance of the B band modulation, along with the lack of detection in the V band, make its identification uncertain.

Further measurements are needed to confirm it.

References

New York, p. 201

Contact
Domenico.impiombato@oapd.inaf.it