
Expanding atmosphere models for SSS

Daan van Rossum

University of Hamburg

May 12, 2009

Main Collaborators

- Peter Hauschildt (Hamburg)
- Sebastian Knop (Hamburg)
- Ed Baron (U. of Oklahoma)
- Jan-Uwe Ness (ESAC, Madrid)

Outline

Intro

Previous work

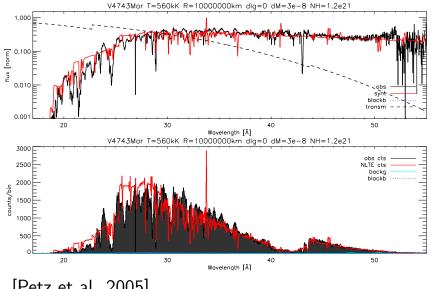
Improvements in this work

First results of this work

PHOENIX

General-purpose stellar atmosphere code

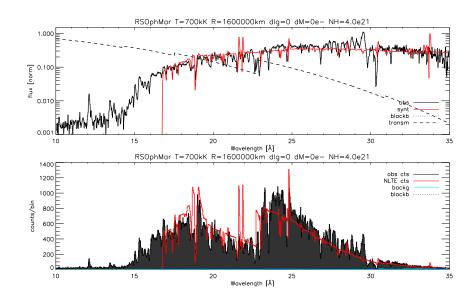
- ▶ radiative transfer → operator splitting
- ▶ NLTE
- ▶ 1D spherical symmetric
- expanding media


[Hauschildt & Baron 1998]

Previous work

Improvements in this work

First results of this work


Previous SSS work with PHOENIX

[Petz et al. 2005]

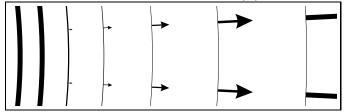
Old models to new data

Previous work

Improvements in this work

First results of this work

Improvements to the models


New physics:

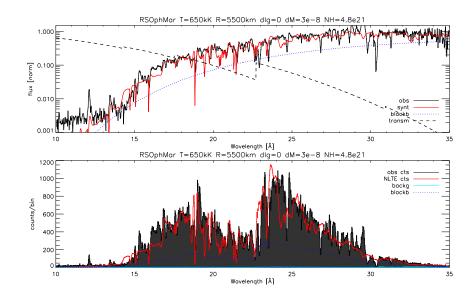
- 1. reimplementation of NLTE: rates, opacities, rate matrix solver
- 2. new temperature correction method
- 3. new handling of broad lines
- 4. new (hybrid-)atmosphere construction
- pure NLTE opacities

Faster: factor 15-45!!

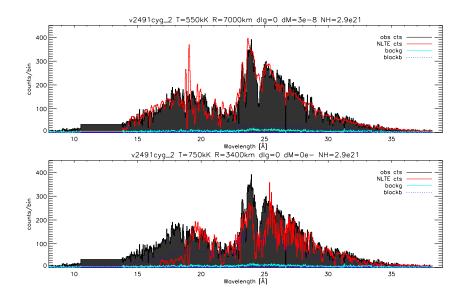
Characteristics of the models

- hydrostatic core: $T_{\rm eff}, \log g$
- expanding envelope: $M, v_{\infty}, v(r)$

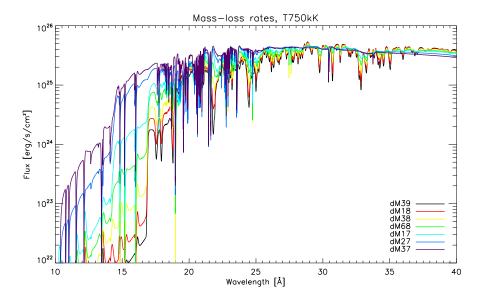
- solar abundances: H He CNO Ne Al Mg Si S Ar Ca Fe
- ▶ Nr. independent levels: 7500
- ▶ Nr. independent lines: 150,000



Previous work


Improvements in this work

First results of this work


First results with new models

First results with new models

Spectrum sensitive to atmosph structure

Previous work

Improvements in this work

First results of this work

Future work...

Theory:

- statistics of perturbed energy levels: Boltzmann?
- line profiles

Praxice:

- atomic data
- abundance analysis
- fit 1D atmospheric structures $[T, \rho, ...](r)$

Future work...

Find out the nature of SSS :-)