

Unique Characteristics of V2491 Cyg

- Rapid optical decline with a secondary peak → Massive White Dwarf (1.3 Mo ?)
- Very short supersoft X-ray duration (~10 days) cf. ~60 days in RS Oph (1.35 Mo WD)
- Superhard X-ray (15-70 keV) was detected with Suzaku (HXD) on Day 10 (Takei et al. 2009)
 - \rightarrow power-law \rightarrow non-thermal origin
 - \rightarrow strong magnetic field ?
- **X-ray detection from pre-nova** (Ibarra et al. 2009)
 - \rightarrow Magnetic Cataclysmic Variable (?)
 - \rightarrow Polar System ? ($\sim 10^{7}$ G)

Rapid optical decline/secondary peak Rapid optical decline/secondary peak

days after outburst

AVSO, VSOLJ, Hachisu & Kato (2009)

Unique Characteristics of V2491 Cyg

- ☆ Rapid optical decline with a secondary peak
 → Massive White Dwarf (1.3 Mo ?)
- Very short supersoft X-ray duration (~10 days) cf. ~60 days in RS Oph (1.35 Mo WD)
- Superhard X-ray (15-70 keV) was detected with Suzaku (HXD) on Day 10 (Takei et al. 2009)
 - \rightarrow power-law \rightarrow non-thermal origin
 - \rightarrow strong magnetic field ?
- **X-ray detection from pre-nova** (Ibarra et al. 2009)
 - \rightarrow Magnetic Cataclysmic Variable (?)
 - \rightarrow Polar System ? ($\sim 10^{7}$ G)

Very short supersoft X-ray duration

Very short supersoft X-ray duration

days after outburst Hachisu & Kato (2009), Page et al. (2009), Osborn (today's talk) Very short supersoft X-ray duration

Very short supersoft X-ray duration

Long SSS duration of RS Oph (2006)

Long SSS duration of RS Oph (2006)

days after optical peak

Unique Characteristics of V2491 Cyg

- Rapid optical decline with a secondary peak → Massive White Dwarf (1.3 Mo ?)
- ☆ Very short supersoft X-ray duration (~10 days) cf. ~60 days in RS Oph (1.35 Mo WD)
- Superhard X-ray (15-70 keV) was detected with Suzaku (HXD) on Day 10 (Takei et al. 2009)
 - \rightarrow power-law \rightarrow non-thermal origin
 - \rightarrow strong magnetic field ?
- **X-ray detection from pre-nova** (Ibarra et al. 2009)
 - → Magnetic Cataclysmic Variable (?)
 - \rightarrow Polar System ? ($\sim 10^{7}$ G)

Superhard X-ray detected on Day 10 Superhard X-ray detected on Day 10

Just before the secondary peak

Just before the secondary peak

days after outburst AAVSO, VSOLJ, Hachisu & Kato (2009)

Unique Characteristics of V2491 Cyg

- Rapid optical decline with a secondary peak → Massive White Dwarf (1.3 Mo ?)
- Very short supersoft X-ray duration (~10 days) cf. ~60 days in RS Oph (1.35 Mo WD)
- ☆ Superhard X-ray (15-70 keV) was detected with Suzaku (HXD) on Day 10 (Takei et al. 2009)
 - \rightarrow power-law \rightarrow non-thermal origin
 - \rightarrow strong magnetic field ?
- X-ray detection from pre-nova (Ibarra et al. 2009)
 - \rightarrow Magnetic Cataclysmic Variable (?)
 - \rightarrow Polar System ? ($\sim 10^{7}$ G)

X-ray detection from pre-nova

X-ray detection from pre-nova

Unique Characteristics of V2491 Cyg

- Rapid optical decline with a secondary peak → Massive White Dwarf (1.3 Mo ?)
- Very short supersoft X-ray duration (~10 days) cf. ~60 days in RS Oph (1.35 Mo WD)
- O Superhard X-ray (15-70 keV) was detected with Suzaku (HXD) on Day 10 (Takei et al. 2009)
 - \rightarrow power-law \rightarrow non-thermal origin
 - \rightarrow strong magnetic field ?
- ☆ X-ray detection from pre-nova (Ibarra et al. 2009)
 - \rightarrow Magnetic Cataclysmic Variable (?)
 - \rightarrow Polar System ? ($\sim 10^{7}$ G)

Two Main Objections of V2491 Cygni Two Main Objections of V2491 Cygni

- O How do we understand such a short supersoft X-ray source phase ?
 - \rightarrow no thick He-layer beneath the H-burning zone \leftarrow thick He-layer of RS Oph (2006)
 - \rightarrow white dwarf mass is so heavy but decreasing ?
- **O** What is the mechanism of the secondary peak ?
 - → magnetic reconnection as the energy source
 → superhard X-ray photon before the 2nd peak
 Two other twins, V1493 Aql and V2362 Cyg, show the same 2nd peak

Optical Light Curve of V1493 Aql Optical Light Curve of V1493 Aql

Optical Light Curve of V2362 Cyg

Evolution of Classical Novae

Evolution of Classical Novae

WD envelope model with the envelope model

Basic equations of WD winds

Basic equations of WD winds

 $\dot{M} = 4\pi r^2 \rho v = \text{const.}$, continuity $v \frac{dv}{dr} + \frac{1}{\rho} \frac{dP}{dr} + \frac{GM}{r^2} = 0$, equation of motion $P = \frac{\rho kT}{\mu m_a} + \frac{1}{3}aT^4$, equation of state $\frac{dT}{dr} = -\frac{3\kappa\rho L_r}{16\pi a c T^3 r^2}$, diffusion equation $\Lambda = L_r + \dot{M}\left(\frac{v^2}{2} + w - \frac{GM}{r}\right) = \text{const.}, \text{ energy}$ $w = \frac{5}{2} \frac{kT}{\mu m_{\alpha}} + \frac{4aT^4}{3\rho}$, enthalpy $L_{\text{total}} = L_r + L_{\text{advection}}$, total luminosity $L_{\text{advection}} = \frac{4aT^4}{3\rho}\dot{M}$, advection luminosity

Wind solution

Time Evolution of WD envelope Time Evolution of WD envelope

For a given set of $(M_{WD}, R_{WD}, X, Y, Z)$ 1. a series of wind solutions with decreasing ΔM $R_{\rm ph}(\Delta M), T_{\rm ph}(\Delta M), v_{\rm ph}(\Delta M)$ $M_{\rm wind}(\Delta M), \ M_{\rm nuc}(\Delta M)$ 2. time-sequence is mimicked by a decreasing Δ M-sequence due to wind mass loss and nuclear burning

$$\frac{d}{dt}\Delta M = \dot{M}_{\rm acc} - \dot{M}_{\rm wind}(\Delta M) - \dot{M}_{\rm nuc}(\Delta M)$$

Formula of free-free emission

Formula of free-free emission

 $j_{\nu}d\Omega dV dt d\nu$

$$= \frac{16}{3} \left(\frac{\pi}{6}\right)^{1/2} \frac{e^6 Z^2}{c^3 m_e^2} \left(\frac{m_e}{kT_e}\right)^{1/2}$$
$$\times g \exp\left(-\frac{h\nu}{kT_e}\right) N_e N_i d\Omega dV dt d\nu$$

- ν : frequency
- j_{ν} : emissivity
- m_e : electron mass
- T_e : electron temperature
- g: gaunt factor
- N_e : electron number density
- N_i : ion number density

Light Curve Model of Novae

$\bigcirc \text{ (OPT&IR) optically thick wind phase}$ $F_{\nu} \propto \int N_e N_i dV \propto \int_{R_{\rm ph}}^{\infty} \rho_{\rm wind}^2 r^2 dr$ $\propto \int_{R_{\rm ph}}^{\infty} \frac{\dot{M}_{\rm wind}^2}{v_{\rm ph}^2} r^2 dr = \frac{\dot{M}_{\rm wind}^2}{v_{\rm ph}^2} R_{\rm ph}$

Supersoft X-ray emission blackbody apporximation of photosphere

Model Light Curve (WD Mass)

Model Light Curve (WD Mass)

\bigcirc Timescale depends mainly on the WD mass

No helium layer was developed No helium layer was developed

Early emergence of supersoft X-ray Early emergence of supersoft X-ray

O depending on hydrogen content (X)

Dependence of hydrogen content

Dependence of hydrogen content

Dependence of WD mass

Dependence of WD mass

Opt. and supersoft X-ray light curves Opt. and supersoft X-ray light curves

Summary of V2491 Cygni (1)

Summary of V2491 Cygni (1)

(Hachisu & Kato, 2009, ApJL, 694, L103) 1 . White Dwarf Mass by fitting $M_{\rm WD} = 1.3 \pm 0.02 M_{\odot}$ for X = 0.20

2 . No thick helium layer developed beneath the hydrogen shell-burning

 \rightarrow WD mass does not increase but decreases \rightarrow O and Ne enrichment (WD core material)

- **3. No progenitor of type Ia supernovae**
 - \rightarrow WD mass does not increase but decreases

Epoch of superhard X-ray

Epoch of superhard X-ray

days after outburst

Magnetic Reconnection ?

- \bigcirc WD envelope \rightarrow expand $\rightarrow \varepsilon_{rot} > \varepsilon_{mag}$
 - $\rightarrow \mbox{ differential rotation} \\ \rightarrow \mbox{ amplify magnetic field}$
 - \rightarrow reconnection (additional energy)
 -) reconnection and acceleration \rightarrow high energy electron ?
 - \rightarrow nonthermal superhard X-ray ?
- \bigcirc photosphere shrinks to Roche lobe size
 - \rightarrow gas density decrease ($\varepsilon_{\rm thermal,gas} \approx \varepsilon_{\rm mag}$)
 - \rightarrow mass-ejection by magnetic tension ?

WD Envelope Model of V2491 Cyg WD Envelope Model of V2491 Cyg

Magnetic activity in V2491 Cyg

Magnetic activity in V2491 Cyg

Magnetic Reconnection ?

- \bigcirc WD envelope \rightarrow expand $\rightarrow \varepsilon_{rot} > \varepsilon_{mag}$
 - $\rightarrow \mbox{ differential rotation} \\ \rightarrow \mbox{ amplify magnetic field}$
 - \rightarrow reconnection (additional energy)
 -) reconnection and acceleration \rightarrow high energy electron ?
 - \rightarrow nonthermal superhard X-ray ?
- \bigcirc photosphere shrinks to Roche lobe size
 - \rightarrow gas density decrease ($\varepsilon_{\rm thermal,gas} \approx \varepsilon_{\rm mag}$)
 - \rightarrow mass-ejection by magnetic tension ?

WD Envelope Model of V2491 Cyg WD Envelope Model of V2491 Cyg

Magnetic Reconnection ?

- \bigcirc WD envelope \rightarrow expand $\rightarrow \varepsilon_{rot} > \varepsilon_{mag}$
 - $\rightarrow \mbox{ differential rotation} \\ \rightarrow \mbox{ amplify magnetic field}$
 - \rightarrow reconnection (additional energy)
 -) reconnection and acceleration \rightarrow high energy electron ?
 - \rightarrow nonthermal superhard X-ray ?
- \bigcirc photosphere shrinks to Roche lobe size
 - \rightarrow gas density decrease ($\varepsilon_{\rm thermal,gas} \approx \varepsilon_{\rm mag}$)
 - \rightarrow mass-ejection by magnetic tension ?

When does magnetic activity stop?

When does magnetic activity stop?

\bigcirc photosphere further shrinks \rightarrow gas density further decrease

$$\rightarrow \varepsilon_{\rm rot} < \varepsilon_{\rm mag}$$

→ back to original position
→ magnetic activity ends
after the 2nd peak

○ 2nd peak corresponds to $\rightarrow \varepsilon_{\rm rot} \approx \varepsilon_{\rm mag}$

○ This day is 15 days after the outburst in V2491 Cyg (1.3 Mo WD)

WD Envelope Model of V2491 Cyg WD Envelope Model of V2491 Cyg

When does magnetic activity stop?

When does magnetic activity stop?

\bigcirc photosphere further shrinks \rightarrow gas density further decrease

$$\rightarrow \varepsilon_{\rm rot} < \varepsilon_{\rm mag}$$

→ back to original position
→ magnetic activity ends
after the 2nd peak

○ 2nd peak corresponds to $\rightarrow \varepsilon_{\rm rot} \approx \varepsilon_{\rm mag}$

○ This day is 15 days after the outburst in V2491 Cyg (1.3 Mo WD)

2nd peak on 15 days after outburst

2nd peak on 15 days after outburst

Epoch of the 2nd peak

50 days after the outburst in V1493 Aql (1.15 Mo WD) 240 days after the outburst in V2362 Cyc

() 240 days after the outburst in V2362 Cyg (0.7 Mo WD)

object	\max^{a} (day)	$P_{ m orb}\ m (day)$	$M_2{}^{\mathrm{b}}$ (M_{\bigodot})	$a \ (R_{\odot})$	$M_{ m WD} \ (M_{\odot})$	$arepsilon_{ m rot}$
V2491 Cyg	15	0.0958	0.18	1.0	1.32	13
					1.3	15
					1.27	18
V1493 ~Aql	50	0.156	0.34	1.4	1.2	40
					1.15	49
					1.1	62
V2362 Cyg	250	0.207	0.48	1.6	0.75	200
					0.7	240
					0.65	330

Optical Light Curve of V1493 Aql Optical Light Curve of V1493 Aql

Optical Light Curve of V2362 Cyg

Summary of V2491 Cygni (2)

Summary of V2491 Cygni (2)

(Hachisu & Kato, 2009, ApJL, 694, L103) **1. 2nd peak can be explained by strong** magnetic activity

 $\varepsilon_{\rm mag} \approx \varepsilon_{\rm rot}$ for $B \sim 3 \times 10^7 {\rm G}$ on WD

- 2. Timescales of the 2nd peaks can be explained by the same mechanism in V2491 Cyg, V1493 Aql, and V2362 Cyg $\varepsilon_{\rm rot} \approx \varepsilon_{\rm mag}$
- **3. Superhard X-ray detection is probably related to the magetic activity before the 2nd peak**