X-ray observations of classical novae Theoretical implications

Margarita Hernanz

Institut de Ciències de l'Espai (CSIC-IEEC) Barcelona (Spain)

Origin of X-ray emission

Summary of observational results (novae as SSS)

ROSAT, Beppo-SAX, XMM-Newton & Chandra, Swift

Theoretical models: classical and recurrent novae V1974 Cyg 1992 – RS Oph

Origin of X-ray emission (I)

• Residual steady H-burning on top of the white dwarf: photospheric emission from the hot WD:

 $T_{eff} \sim (2-10) \times 10^{5} K (L \sim 10^{38} erg/s) \longrightarrow supersoft X-rays$

- detected by ROSAT/PSPC in only 3 classical novae, out of 39 observed up to 10 years after explosion: GQ Mus (N Mus1983), N Cyg 1992, N LMC 1995 (Orio et al. 2001). A few more detections with BeppoSAX, Chandra, XMM-Newton, Swift
- ➤ duration related to H-burning turn-off time. "Old" theory: τ_{nuc}≈100yr; observations: <9 - 12 yr; typically: < 2yr</p>

Origin of X-ray emission (II)

- Internal (external) shocks in the ejecta: thermal plasma emission
 - detected early after explosion (N Her 1991, N Pup 1991, N Cyg 1992, N Vel 1999, …): internal shocks
- Reestablished accretion: emission "as a CV" (idem)

Hard (but also soft) X-rays, depending on the thermal plasma T

Origin of X-ray emission (III)

Compton degradation of γ-rays emitted by classical novae *CAN NOT* be responsible of their *early hard X-ray emission*:

•Cut-off at 20 keV (photoelectric abs.)

•Fast disappearence: 2days (w.r.t T_{max}, i.e., before visual outburst)

Gómez-Gomar, Hernanz, José, Isern, 1998, MNRAS

Observations – Supersoft X-ray emission

EXOSAT and ROSAT discoveries:

GQ Mus (1983): 1st detection of X-rays in a nova, EXOSAT (Ögelman et al. 1984). One of the longest supersoft X-ray phases: **9 yr** Ögelman et al.1993; Shanley et al. 1995; Orio et al. 2001; Balman & Krautter 2001

V1974 Cyg (1992): complete light curve with ROSAT- rise, plateau and decline – 1.5 yr Krautter et al. 1996, Balman et al. 1998 → later

N LMC 1995: ROSAT & XMM-Newton – **8 yrs ROSAT discovery** Orio & Greiner 1999, **XMM-Newton obs**. Greiner et al. 2003

BeppoSAX

V382 Vel (1999): supersoft X-ray flux not constant; model atmosphere not a good fit; emission lines from highly ionized nebula (Orio et al 2002); Chandra grating obs (Burwitz et al., SuNess-etsale): http://www.ess.org/lines/2009 M. Hernanz 5

Observations – Supersoft X-ray emission

Chandra and XMM-Newton: grating observations
V1494 Aql (1999): burst and pulsations Drake et al. 2003;
V4743 Sgr (2002): Ness et al 2003: strong variability –
Rauch: complex spectra
XMM-Newton monitoring campaign: V5115 Sgr V5116 Sgr 2005
Swift: Ness 2007, Osborne
V723 Cas (1985): L and T_{eff} not well determined (BB) Ness et

al. 2008 – Still SSS 12 yrs after outburst. Isn't L a bit small for whole WD emission: L>5x10³⁶ erg/s?

V458 Vul (2007), V2491 Cyg (2008): duration SS phase 10 d! Ness, Takei, Hachisu

- RS Oph recurrent nova: Bode (Swift), Nelson & Orio, Ness et al, Drake et al. (XMM & Chandra) 60 days
- M31 nova survey → Pietsch

Target	Discovery date	Date of observation – Time after outburst	Detection
<mark>N Sco 1997</mark> V1141 Sco	June 5	Oct. 11, 2000 – 1224d, 3.4yr Mar. 24, 2001 – 1388d, 3.8yr Sep. 7, 2001 – 1555d, 4.3yr	NO
<mark>N Sgr 1998</mark> V4633 Sgr	March 22	Oct. 11, 2000 – 934d, 2.6yr Mar. 9, 2001 – 1083d, 3.0yr Sep. 7, 2001 – 1265d, 3.5yr	YES but no SSS
N Oph 1998 V2487 Oph	June 15	Feb. 25, 2001 – 986d, 2.7 yr Sep. 5, 2001 – 1178d, 3.2 yr Feb. 2002 – 1352d, 3.7yr Sept. 24, 2002 – 1559d, 4.3yr	YES but no SSS
N Sco 1998 V1142 Sco	October 21	Oct. 11, 2000 – 721 d, 2.0 yr Mar. 24, 2001 – 885 d, 2.4 yr Sep. 7, 2001 – 1052 d, 2.9 yr	2.6±0.3 2.2±0.4 1.2±0.2 (10 ⁻² cts/s)
N Mus 1998 LZ Mus	December 29	Dec. 28, 2000 – 730 d, 2.0 yr Jun. 26, 2001 – 910 d, 2.5 yr Dec. 26, 2001 – 1093 d 3.0 yr	NO?

- No supersoft X-ray emission related to residual H-burning detected
 → all novae had already turned-off
- 3 out of 5 were emitting [thermal plasma (+ BB)] spectrum → ejecta/accretion Supersoft X-ray sources: new developments - ESAC, 18-20 May 2009

Target	Discovery date	Date of observation – Time after outburst	Detection
<mark>N Oph 1998</mark> V2487 Oph	June 15	Mar. 24, 2007 – 8.8yr AO6 long exposure	YES but no SSS
N Cyg 2005 V2361 Cyg	February 10	May 13, 2006 - 15mo – bkg Oct. 20, 2006 - 20months AO5	 YES <i>marginal: (4.0±0.8)x10⁻³</i> cts/s
<mark>N Sgr 2005a</mark> V5115 Sgr	March 28	Sep. 27, 2006 – 18months Apr. 4, 2009 – 49 months	YES <u>supersoft source</u> YES but no SSS
N Sgr 2005b V5116 Sgr	July 4	Mar. 20, 2007 – 20 months Mar. 13, 2009 – 44 months	YES <u>supersoft source</u> YES but no SSS
N Cyg 2006 V2362 Cyg	April 2	May 5, 2007 – 13 months affected by bkg AO6 Dec. 22, 2008 – 32 months	YES but no SSS YES but no SSS
N Oph 2006a V2575 Oph	February 9	Sep. 4, 2007 – 19 months AO6	NO
N Oph 2006b V2576 Oph	April 6	Oct. 3, 2007 – 18months AO6	NO

Supersoft X-ray emission related to residual H-burning found in 2 novae from 2005 (V5115 Sgr & V5116 Sgr) → novae had not

Supersoft X-ray sources: new developments - turned-offy yet

8

Nova Sgr 2005 b - V5116 Sgr - 610 days post-outburst

Nova Sgr 2005 b – V5116 Sgr: new obs. March 2009 1348 days post-outburst

SUMMARY of XMM-Newton campaign

- 11 novae have been observed between 3 months and 5 years after outburst (9 years)
- 4 non detected and 2 detected marginally
- Only 2, V5115 Sgr 2005a and V51116 Sgr 2005b, were still bright in supersoft X-rays, revealing remaining H-nuclear burning one of them with a puzzling temporal behavior
- V2487 Oph 1998, clearly shows recovery of accretion in a magnetic CV (most probably an intermediate polar)
- V4633 Sgr 1998 shows either hot ejecta or accretion (or both)
- V2362 Cyg 2006: mainly hard X-rays (ejecta or accretion)

Different behaviours in X-rays of post-outburst novae (1-4 years old), as seen with XMM-Newton:

- supersoft, still burning H (not very often) - V5115 & V5116 Sgr(2005)

 \implies WD properties: M_{wd} , M_{env} , chem. comp., turnoff

 \implies If absent, shows that $M_{ejected} > M_{accreted}$: M_{wd} decreases

-soft and hard X-rays, reaching E~10 keV

ejecta (heated by shocks) - V4633 Sgr 1998: T and n distribution, chemical composition

"cataclysmic-like" emission accretion - V2487 Oph 1998: accretion disk/stream, (magnetic field, periodicities)

Hydrodynamical models of nova explosions

Parameter	ONe1	ONe2	ONe3	ONe4	ONe5	ONe6	ONe7
$\begin{array}{c c} M_{\rm wd} \ (M_{\odot}) \\ Mixing \ (\%) \\ \Delta M_{\rm env} \ (10^{-5} \ M_{\odot}) \\ \hline t_{\rm acc} \ (10^5 \ {\rm yr}) \\ t_{\rm rise} \ (10^6 \ {\rm s}) \\ \hline \epsilon_{\rm nuc,max} \ (10^{16} \ {\rm ergs} \ {\rm g}^{-1} \ {\rm s}^{-1}) \\ \hline T_{\rm max} \ (10^8 \ {\rm K}) \\ \hline t_{\rm max} \ ({\rm s}) \\ \hline \Delta M_{\rm ejec} \ (10^{-5} \ M_{\odot}) \\ \hline v_{\rm ejec} \ ({\rm km} \ {\rm s}^{-1}) \\ \hline K \ (10^{45} \ {\rm ergs}) \\ \hline \end{array}$	1.00 50 6.4 3.3 20 0.29 1.98 768 4.7 1600 1.3	1.15 25 3.2 1.9 46 0.36 2.21 828 2.3 2100 1.1	$ \begin{array}{r} 1.15 \\ 50 \\ 3.2 \\ 1.9 \\ 13 \\ 0.76 \\ 2.19 \\ 540 \\ 1.9 \\ 2400 \\ 1.2 \\ \end{array} $	1.15 75 3.5 2.1 11 2.4 2.48 305 2.6 2500 1.9	1.25 50 2.2 1.3 6.8 2.1 2.44 380 1.4 3100 1.4	1.35 50 0.54 0.31 2.5 19 3.24 150 0.44 4100 0.9	$ \begin{array}{r} 1.35 \\ 75 \\ 0.58 \\ 0.33 \\ 2.1 \\ 14 \\ 3.32 \\ 108 \\ 0.34 \\ 6000 \\ 1.3 \\ \end{array} $
H mass fraction Global metallicity M_{env} - M_{ejec} (10 ⁻⁵ M_{\odot}) Luminosity (10 ⁴ L_{\odot})	X Z M _{rem} L _{platea}	0.53 0.27 0.9 4.3	0.35 0.50 1.3 4.9	0.18 0.74 0.9 5.4	José &	Hernanz,	ApJ 1998
time (turn-off) (yrs)	$ au_{nuc}$	8.9	7.4	2.4	too long	g	
$ au_{ m nuc}$ =	$= 400 \left(\frac{N}{10^{-1}} \right)$	$\left(\frac{M_{\rm H}}{4}\right)\left(\frac{1}{2}\right)$	$\frac{L}{10^4 L_{\odot}}$	$\int_{0}^{1} yr$	Starrfiel	d 1998	

INITIAL PARAMETERS AND MAIN CHARACTERISTICS OF ONe NOVA MODELS

Fig. 1. Total luminosity (*left panel*) and envelope mass (*right panel*) versus effective temperature for our white dwarf envelope models: ONe75 (dotted line), ONe50 (short dash), ONe25 (long dash), and CO50 (short dash–dot). Effective temperature is given in eV, kT_{eff} (eV) = 8.617 × 10⁻⁵ T_{eff} (K) Solid lines indicate envelopes without convective regions. Five series of models are plotted for each chemical composition, corresponding to total masses 0.9, 1.0, 1.1, 1.2, and 1.3 M_{\odot} . A line indicating the luminosity-effective temperature relation for constant photospheric radius is over-plotted in left panel for comparison.

Sala & Hernanz, A&A 2005

Model	$M_{ m c} \ (M_{\odot})$	$L^{ m plateau}$ $(10^4 L_{\odot})$	$kT_{\rm eff}^{\rm max}$ (eV)	$T_{ m eff}^{ m max} \ (10^5 \ { m K} \)$	$M_{ m env}^{ m max} \ (10^{-6} \ M_{\odot})$	$M_{ m env}^{ m min} \ (10^{-6} \ M_{\odot})$	$\Delta t_{10 \text{ eV}}^{(a)}$ (days)
	0.9	3.9	57	6.6	2.3	1.9	47
ONe75	1.0	4.4	64	7.4	1.4	1.2	24
(X = 0.18)	1.1	5.2	73	8.5	0.84	0.71	12
	1.2	5.7	86	9.9	0.40	0.35	4.6
	1.3	6.2	103	11.9	0.16	0.15	1.1
	0.9	3.5	53	6.1	2.7	1.5	160
ONe50	1.0	4.1	60	7.0	1.7	1.2	78
(X = 0.35)	1.1	4.7	69	8.0	0.99	0.72	37
	1.2	5.2	81	9.4	0.45	0.35	14
	1.3	5.6	98	11.4	0.19	0.15	4.9
	0.9	2.9	49	5.7	3.0	2.2	430
ONe25	1.0	3.5	56	6.5	2.1	1.4	210
(X = 0.53)	1.1	4.0	64	7.5	1.20	0.81	98
	1.2	4.6	77	8.9	0.60	0.39	36
	1.3	5.2	93	10.8	0.22	0.16	12
	0.9	3.6	54	6.2	2.9	1.9	230
CO50	1.0	4.2	61	7.1	1.8	1.2	90
(X = 0.35)	1.1	4.7	70	8.1	1.0	0.72	48
	1.2	5.4	82	9.5	0.49	0.35	19
	1.3	6.0	99	14.7	0.19	0.15	6

^{*a*} Time needed for the envelope to evolve from $kT_{\rm eff} \simeq kT_{\rm eff}^{\rm max} - 10$ eV to $kT_{\rm eff}^{\rm max}$.

Sala & Hernanz, A&A 2005

 \Rightarrow T_{eff} (max) depends on M_{wd} but also on H content

Quasi-static temporal evolution

$$\Delta t = \epsilon \frac{\Delta M_{\rm env} X_{\rm H}}{L}$$

Constraints on models from ROSAT observations of V1974 Cyg 1992:

supersoft source during various months

Nova Cyg 1992. ROSAT observations

24

V1974 Cyg: ROSAT's soft X-ray light curve

rise: until day 147 plateau: 18 months BB fits not good – too large L Krautter et al. 1996, ApJ

ONe WD atmospheres MacDonald & Vennes Balman et al. 1998, ApJ

	Day after	$K^{a,b}$	$R^c_{ m photos}$	$kT_{\rm eff}^{b}$
	outburst	10^{-25}	(10^9 cm)	(eV)
А	255	0.6–2.4	1.8–3.7	34.3–38.3
В	261	0.3-0.9	1.3-2.3	38.4-41.8
С	291	0.4-0.8	1.5-2.1	41.2-44.3
D	434	0.32-0.36	1.3–1.4	49.4–49.7
Е	511	0.22-0.26	1.1-1.2	50.6-51.0

Table 1.ROSAT observational results for V1974 Cyg.

^{*a*} Normalization constant of the white dwarf atmosphere model, $K = (R/D)^2$, where R and D are the photospheric radius and the distance to the source.

^b Results from Balman et al. (1998).

^c Photospheric radius for a distance of 2.5 kpc.

Balman et al. 1998, ApJ

Models that best explain the supersoft Xray emission of V1974 Cyg 1992 and its evolution

 • M_{wd}=0.9 M_☉, 50% mixing with CO core (but V 1974Cyg 1992 was a neon nova!)

or

• M_{wd} =1.0 M_{\odot} , 25% mixing with ONe core

[in goog agreement with models of the optical and UV light curve (Kato & Hachisu, 2006)]

• M_{env}~2x10⁻⁶ M_☉

Models of recurrent novae – TNR on accreting WDs

Search combinations of initial conditions leading to short recurrence periods:

 $P_{rec} = \Delta M_{acc} / (dM/dt) = 21$ years

• ΔM_{acc} : required accreted mass on top of the WD to power the outburst through a TNR

• M_{wd}^{ini} ? Accretion rate? L_{wd}^{ini} ?

Accretion rate: related to mass loss from the red giant wind

 \geq effective dM/dt onto the WD: 2x10⁻⁷ - 10⁻⁸ M_{\odot}/yr

Accreted masses to reach H-ignition conditions

Models for the RS Oph outburst							
$M_{wd} = 1.35 - 1.38 M_{\odot} - dM/dt = 2 \ 10^{-7} M_{\odot}/yr - L = 10^{-2} L_{\odot}$							
$M_{wd} (M_{\odot})$ - ONe	1.35	1.38	No mixing; solar				
$T_{peak}(10^8 K)$	2.8	3.1	accretion				
$M_{acc} (M_{\odot})$	4.7 10-6	2.0 10-6					
$M_{ejec} (M_{\odot})$	3.0 10-6	1.3 10-6					
t _{TOT}	24 yr	10.4 yr					
$\Delta M_{wd} (M_{\odot})$	1.7 10-6	0.7 10-6					
	36% of M_{acc}	35% of M_{acc}					
Δt (to $M_{Chandra}$)	6.9 10 ⁵ yr	2.9 10 ⁵ yr					

> M_{wd} increases **BUT ONe WDs do not explode as SNIa**

Hernanz & José 2008

Supersoft X-ray sources: new developments - ESAC, 18-20 May 2009

M. Hernanz 32

Supersoft X-ray light curve of the recurrent nova RS Oph (Swift observations, Bode et al. 2006)

 M_{wd} =1.35 M_{\odot} M_{env} = 4x10⁻⁶ M_{\odot}

Kato & Hachisu, 2007

FIG. 3.— Same as those in Fig. 2, but together with the visual light curves. Hydrogen content in the envelope is X = 0.12 (*dashed lines*) and X = 0.17 (*solid lines*). These two models predict visual light curves as shown in the figure. Here we assume a $0.7 M_{\odot}$ red giant with a radius of $35 R_{\odot}$ for the companion, an irradiated disk with a radius of $47 R_{\odot}$ around the white dwarf, a binary orbital period of 455.72 days, and a binary inclination angle of $i = 33^{\circ}$ (Hachisu et al. 2006).

Summary

• Variety of behaviours of post-outburst novae: still need more observations.

• Grating spectra are very rich, but still lack of emission models (e.g. WD atmospheres) to interpret them. Blackbodies give wrong L and T_{eff} & emission is often a mixture of photospheric and ejecta

• WD Mass and envelope chemical composition (mainly H content) determine duration of SS X-ray phase

• Duration of SS X-ray phase observed indicates in general $M_{env} < M_{acc}-M_{eject}$ from hydro models \rightarrow mass loss (wind and/or others?)

• Recurrent novae: very short duration of SS phase compatible with small M_{env} . Challenging for theory: narrow parameter range: M_{wd} extremely large & accretion rate large.

→ main caveat for RNe as SNIa scenario: not CO WDs but ONe