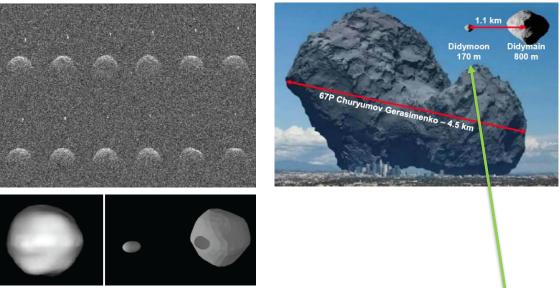

→ ASTEROID IMPACT MISSION

ESA UNCLASSIFIED - For Official Use

AIDA INTERNATIONAL COOPERATION

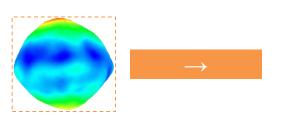


DIDYMOS: A PERFECT TARGET

- Asteroid observed by ground telescopes and radars
- Heliocentric orbit well known
- Shape and size of primary well known (not Didymoon)
- Orbit plane orientation to be confirmed in 1Q 2017 (observations planned with European observatories)
- Didymoon size representative of a potentially hazardous object (generating

Chelyabinsk meteor (Feb 2013): 1500 injuries, 7200 damaged

AIM: A UNIQUE OPPORTUNITY


- Fast "return on investments" (2 yrs) + double return with DART
- Asteroid operations: 6 months to achieve all objectives
- Demonstrate approach integrating platform-payloadoperations teams for faster implementation

- Technology "firsts" enabling future: LEO spacecraft architectures (swarms) and applications, debris-removal, sample-return, mining and human exploration missions
- Based on currently funded developments for: on-board autonomy, CubeSats, advanced GNC, laser comm
- New industries to demonstrate technical capabilities in

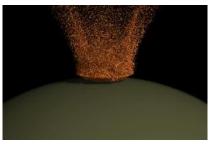
AIM: A UNIQUE OPPORTUNITY

- Impact dynamics beyond laboratory scale
- Probe the interior structure of small bodies (first time)
- Provide "ground-truth" for observations (radar,
- First misson qot demonstrate planetary defence
- Public engagement and outreach similar or even beyond Rosetta (DART impact event visible from ground)
- Opportunity to provide visibility to space programmes at large
- Opportunity to enhance governments' support in space activities

_ II ⊾ II = + II = ≝ _ II II = = II = 0 II _ II = II ₩ IV

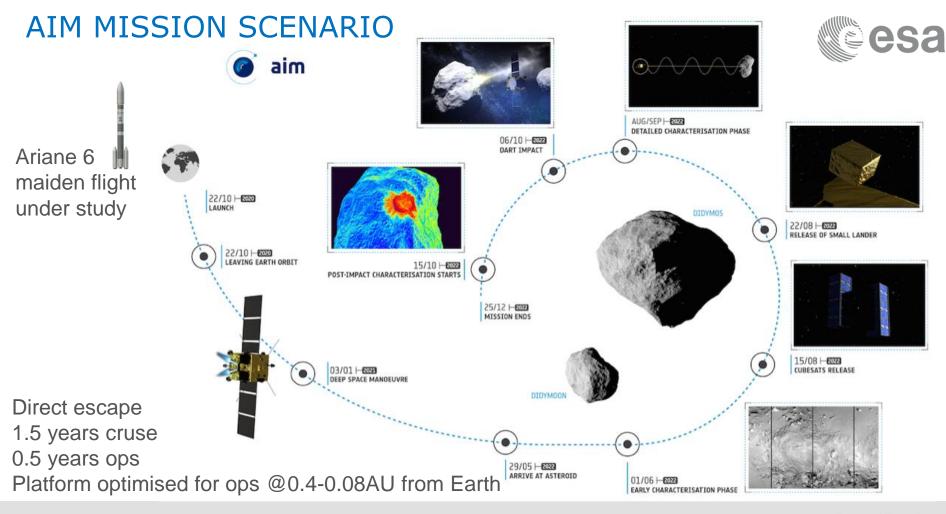
ASTEROID IMPACT MISSION

Interdisciplinary mission of opportunity to explore and demonstrate technologies for future deep-space missions while addressing planetary defence objectives and performing asteroid scientific investigations.

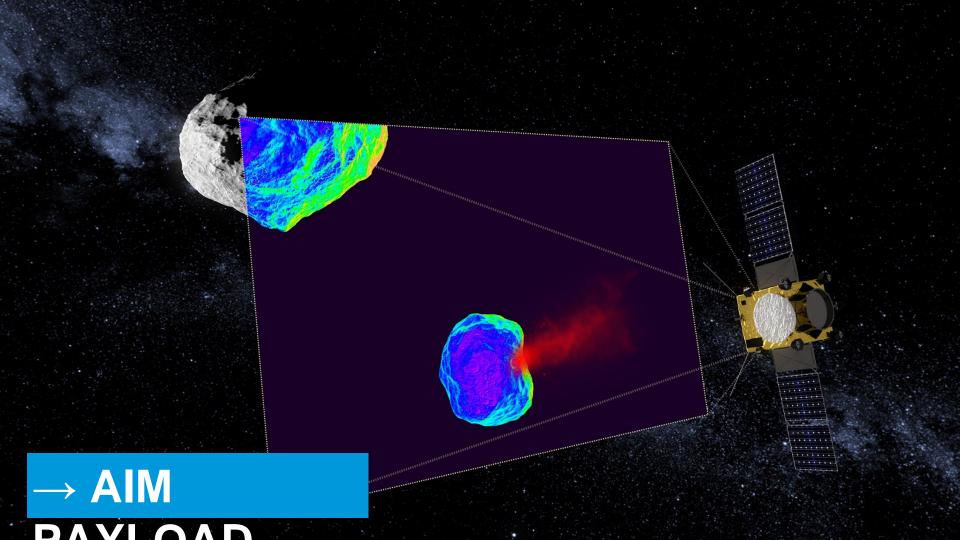


AIM "FIRSTS"

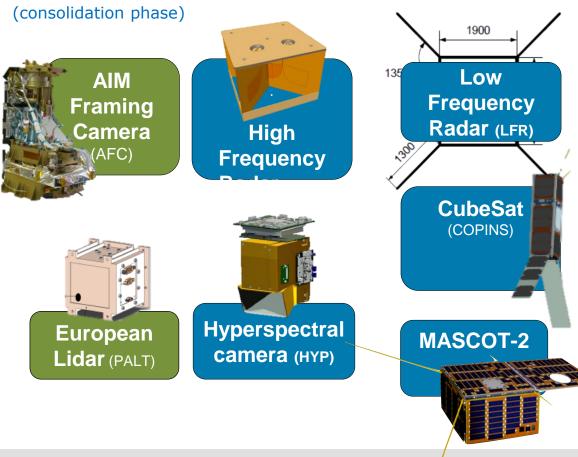
First mission to deploy **CubeSats** in deep-space and operate them through advanced **inter-satellite link** with embedded metrology, first semi-autonomous deployment of **micro-lander**, first demonstration of **interplanetary optical communication**



First mission to fully **measure** and **characterize asteroid** deflection, results enabling the validation of models to be applied to other asteroids if necessary.



First mission to **study a binary asteroid**, its **origins** and sound the **interior structure** providing clues of its formation process.


Image: Image

□ II ▶ II ■ + II ■ ⊆ □ II II □ □ H = 0 II □ H □ H

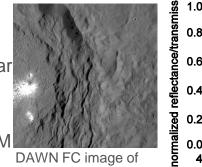
AIM REFERENCE PAYLOAD

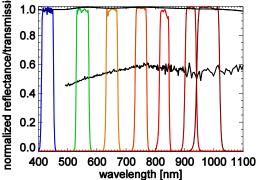

- Several options studied in detail to prepare for proper interfaces and proximity operations.
- Announcement for payload opportunities to be released in Jan 2017 for any remaining mass following CM16 subscriptions by ESA Member States.

÷

Legend: Potential provider companies (country) Built-in AIM S/C (GNC subsystem)

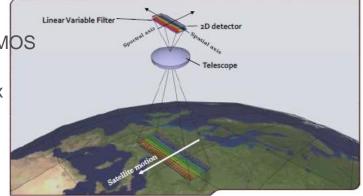
AIM Framing Cameras (AFC), Hyperspectral Imager




Flight Spares of the DAWN cameras

(5.5° FOV, 93.7 µrad/pixel, 400-1000 nm, 7 filters)

- spacecraft GNC system, provided by MPI for solar system research
- Used for spacecraft navigation but also science
- Navigation currently being tested at GMV with QM



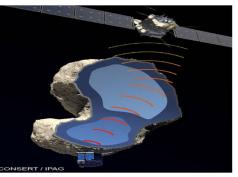
Ceres

Compact Hyperspectral imager

- Grating spectrometer or linear filter fixed on CMOS detector
- Large detector, 7 x 9 deg. FOV at 8 arcsec/pix
- Spectral resolution 5-10 nm
- Wavelength range 470-950 nm
- Developed for Earth observation

PLANETARY RESOURCES INC. (LUX), AMOS (BE), VITO (BE), COSINE (NL)

HIGH-FREQUENCY RADAR (HFR), LOW-FREQUENCY RADAR (HFR)



Stepped high-frequecy frequency radar (300MHz to 2.4GHz, 108W power, 2.86kg, 37 x 37 x 27 cm3)

- determine structure and layering of shallow sub-surface
- ✓ determine structure and layering of shallow sub-surface
 ✓ support asteroid mass determination, shape modelling and grbit characterisation
- + observe ejecta cloud
- support ground-based bi-static radar measurements Arecibo, Goldstone, SRT

IPAG (FR), LATMOS (FR), Univ. Dresden (DE), ROB (BE), Antwerp Space (BE), Astronica (PL), CBK (PL)

Bandwidth

Instrument design based on CONSERT (Rosetta)

- Spare components available and TRL6
- Radar type: Bistatic radar (between AIM and MASCOT-2)
 - Carrier frequency: 60 MHz IPAG (FR), LATMOS (FR), Univ. Dresden (DE), ROB (BE), Antwerp Space (BE), Astronica Bistatipppe துர்று) through the secondary asteroid

= 11 🛌 == + 11 = 😑 = 11 11 = = = 📰 🖬 🖬 = 11 🖽 💥 🕨

THERMAL IMAGER (TIRI), MASCOT-2 µLANDER

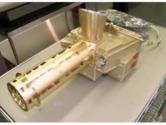
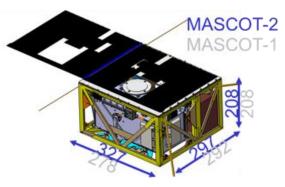
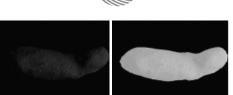



Figure: MERTIS

TIRI strawman design

- Heritage: MERTIS (Bepi-Colombo), MAIR, HIBRIS, AMS
- Temperature range: 200 K 450 K
- Spectral range: 8 μm 13 μm (spectral resolution 0.3 μm) VISUAL @ 5 km IR @ 5 km
- Spatial resolution (goal): 2 m @ 10 km
- Field of view: ~5 deg., similar to cameras
- Thermal and physical surface properties
 COSINE (NL), GMV (PT), GMV (RO), SODERN (F), MPI (D), DLR (D)



MASCOT-2 µlander

- Development based on MASCOT-1 currently on JAXA's Hayabusa-2 mission
- + Size: 33 x 30 x 21 cm
- Mass: 15 kg
- Deployable solar generator cover (supports orientation)
- ✤ 3 months operational lifetime
- + Carries: μ-camera (CAM), low-frequency radar (LFR), radiometer

DLR (DE), SSC (SE), Cobham Gaisler (SE), CBK (PL), Astronika (PL), COSINE (NL), CGS (I), SELEX (I), POLIMI (I), Space-X (CH), CSEM (CH), MCSE (CH)

= II 🛌 := 🖛 + II 🗯 들 = II II = = = := 🖬 🛶 🔯 II = := := := ::: :::

COPINS: A CASE FOR CUBESATS IN DEEP SPACE

ASPECT

- Vis-NIR imaging spectrometer
- Space Weathering
- Shock experiment
- Plume
- VTT (FI), Univ. Helsinki (FI), Aalto Univ. (FI), CAS (CZ)

AGEX

- Mechanical properties of surface material
- Seismic properties of sub-surface
- Determine kinematics prior and

ROB (BE), ISAE (FR), Antw. Space (BE), EMXYS (ES)

PALS

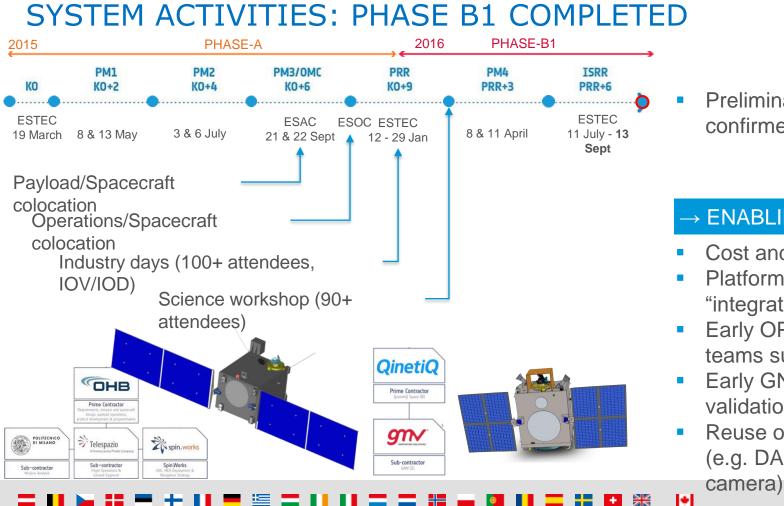
- Composition of volatiles
- Volatiles released from **DART** impact
- Super-resolution imaging ۲
- DART collision and plume •

IFR (SE), AAC (SE), DLR (DE), IEEC (ES), KTH (SE)

CUBATA

- Gravity field
- **Observe DART** impact
- Perform seismology
- Velocity field of the aiaata

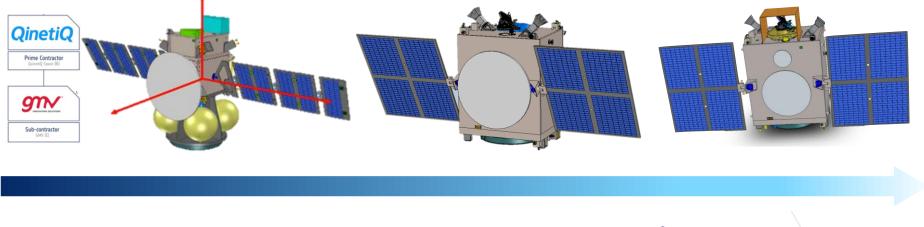
DUSTCUBE



- Dust properties with Nephelometer
- Mineralogical composition
- Compliment com demo
- Reflectance of the

Univ. Vigo (ES), UniBO (I) Micos (CH), Univ. Bern (CH) •

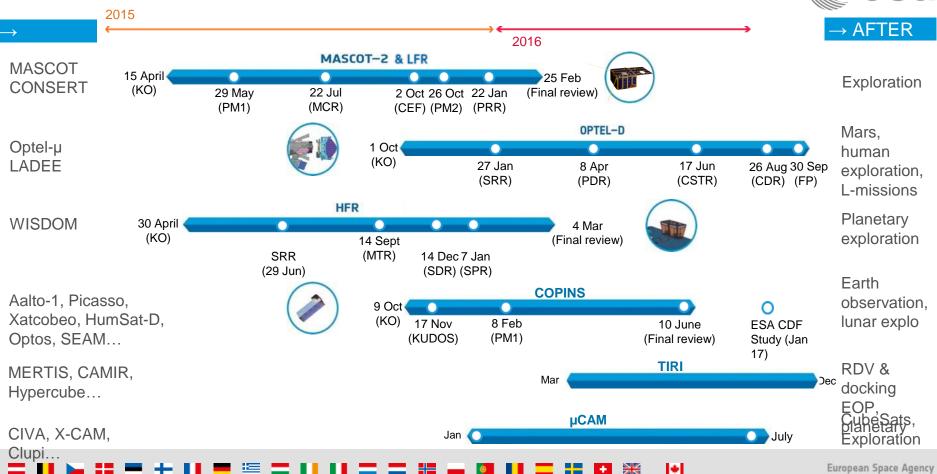
GMV (ES), Sapienza Univ. Roma (IT), INTA

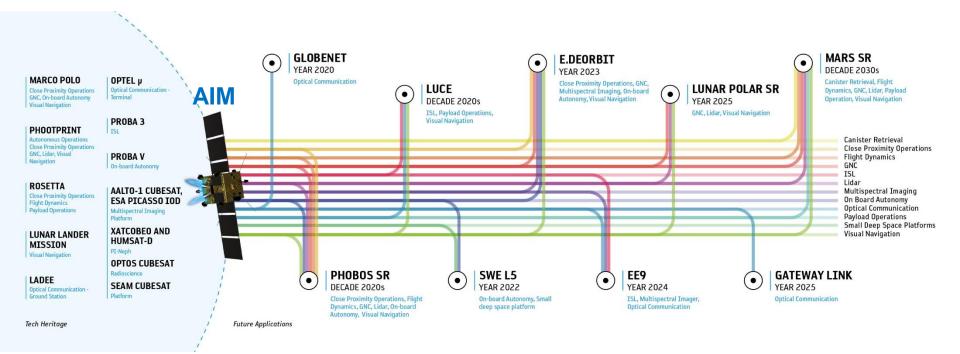

Preliminary feasibility confirmed

→ ENABLING APPROACH

- Cost and schedule driven
- Platform and payload "integrated" teams
- Early OPS and FDyn teams support (Rosetta)
- Early GNC testing and validation in lab
- Reuse of flight spares (e.g. DAWN framing

CURRENT SYSTEM DESIGN (B1)




PAYLOAD ACTIVITIES: TOWARDS COMPLETION

esa

aim is...TECHNOLOGY OF THE FUTURE

aim is... INSPIRATION AND OUTREACH

(416.000 results on Google for "asteroid impact mission")

Asteroid Day press conf AIM @ planetarii Astrofest (London, June 2016\$cience&Vie Magazine

AIM videogameesign your asteroidMen vs Asteroid" DiscoveryAD (Milan, 2016) Asteroid Day (Bucharest, 2015) school contest Channel documentary **CNN TV news**

÷

aim is... HIGH SCIENCE RETURN

Science

1997:

ADS)

- Fly-by of Lutetia (Rosetta) in 2010: Special issue of Science
 - 47 referred articles (source ADS)

Fly-by of Steins (Rosetta) in 2008: 33 referred articles (source

Fly-by of Mathilde (NEAR) in

19 referred articles

Special issue of Icarus

ADS)

Visit of Itokawa (Hayabusa) in 2005:

Visit of Eros (NEAR) in 2000-2001:

Special Issue of Science

One book (Cambridge Press)

156 referred articles (source

- Two Special Issues of Science
- 83 referred articles (source ADS)
- Three Hollywood-like movies

Radar observations of Kleopatra:

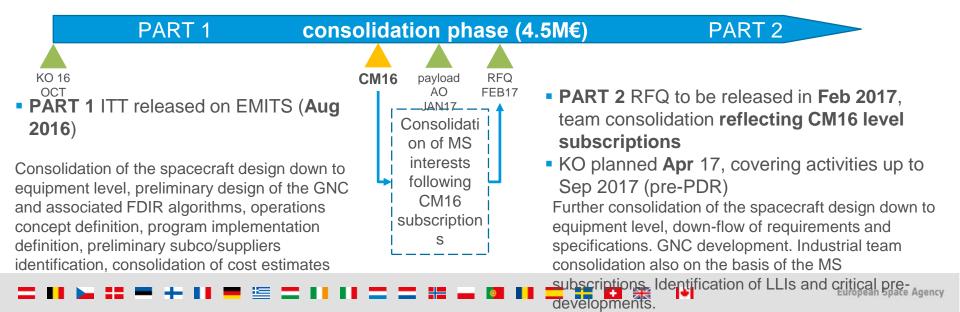
Cover of Science

Visit of Ceres (DAWN) in 2015:

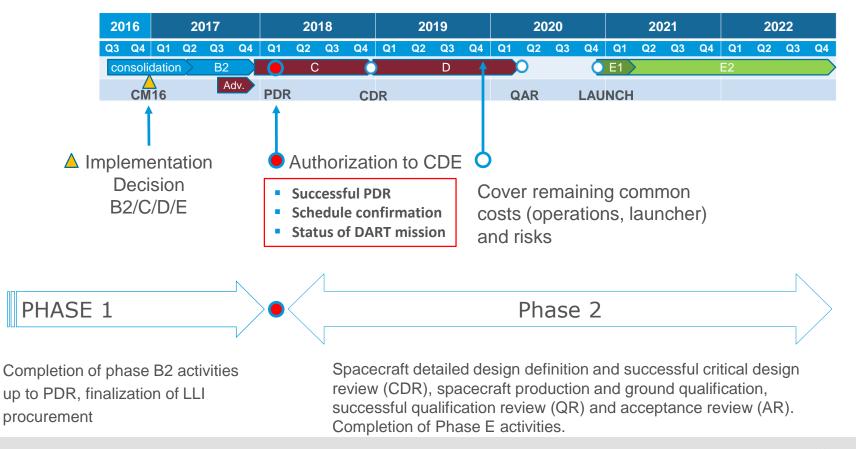
- **Special Issues of Science**
- 206 referred articles (source ADS) for Ceres and Vesta

÷

AIM SCHEDULE & STATUS


$\rightarrow NEXT$		2015		2016		2017			2018			2019		2020		2021
ITT Consolidation	AIM project	Q1 Q2 Q3	Q4 Q1	Q2 Q3 (Q4 Q	1 Q2 Q	3 Q4	Q1 (Q2 Q3	Q4	Q1 (Q2 Q3 Q4	Q1	Q2 Q3	Q4	Q1 Q2
Phase published (4.5M€)	Milestones (start)		-							_		•			-	
	PRR		◆ 12/	'1 '1	:M16							CM1	9			
	iSRR		+	◆ 13/	07											
 Spacecraft design 	SRR			1 I		\$ 27/03										
consolidation	PDR					1	•	9/10								
 Team organization 	CDR						1			•	5/11					
 Consolidation of CaC 	FAR									1				13/04	1	
and implementation	LAUNCH	А												Î	•	16/10
plan	Phase A		в	. <											Î	
	Phase B1				onsol	lidation										
Supported by:	Consolidation					part 2 B2	<									
 Germany 	Phase B2					4	•									
 Belgium 	Advanced C/D						,	c		ζ						
 Spain 	Phase C					Adv.	C/D					D		<		
 Portugal 	Phase D										-					
 Romania 	Contingency														<	
 Poland 	Launch															
	campaign															
	💻 🔤 🚍 💵 💵						+	×	•					European	Space	Agency

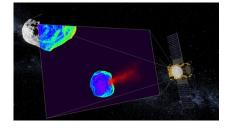
AIM CONSOLIDATION PHASE



- Consolidation phase approved:

AIM IMPLEMENTATION

CONCLUSIONS



First mission to prove **asteroid deflection** with an experiment visible from ground, to reach a **binary asteroid** and to deploy small **CubeSats**. Great **inspiration for European citizens**.

Maintain European industry leadership in GNC, complex proximity operations, forefront of deep-space optical communications, first to operate multiple-platforms in close vicinity, demonstrate new approach for fast missions in deepspace.

Enabling future **space mission architectures** (swarms), **new applications** for Earth monitoring and services, capabilities for **autonomous operations**, demonstrate key technologies for **exploration missions**, **opportunity for new industries** to gain deep-space heritage.

For more information

www.esa.int/AIM

####