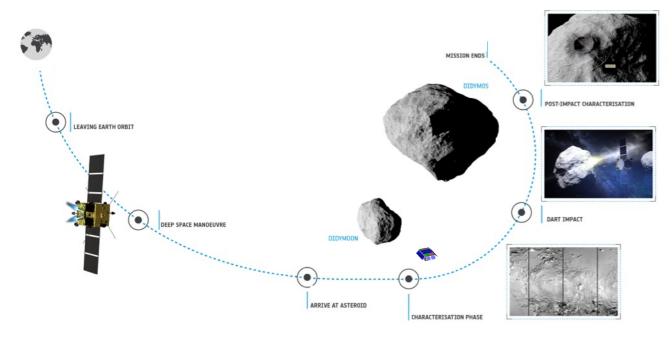


→ HERA MISSION

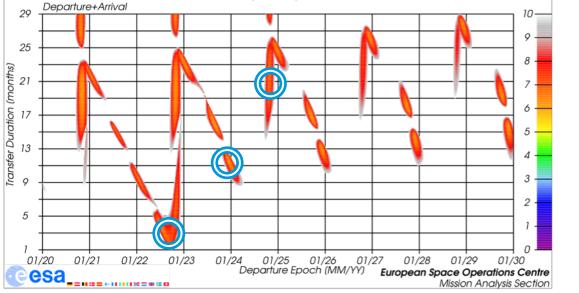
HERA MISSION & CM16 lessons learned


- (CM16) Schedule criticality for 2020 launch
 - → Prepare Asteroid mission with launch opportunities in 2023 (with back-up in 2024 and 2025)
- (CM16) Payload selection unclear
 - → Optimal payload defined + JAXA impactor (option), focus on planetary defense objectives (primary).
- (CM16) DART status not sufficiently clear
 - > Maintain cooperation with NASA now in phase B demonstrating kinetic impactor
- (CM16) Budget shortage and CaC consolidation

→ Perform **phase B1** in **SSA** + **GSTP** to prepare for CM19. Bilaterals with MS to consolidate interests before ITT in 1Q18. Establish a planetary defense initiative.

HERA mission scenario

- First ever investigation of deflection test
- Detailed analysis of impact crater
- First deep-space CubeSat
- First binary asteroid and smallest ever asteroid visited

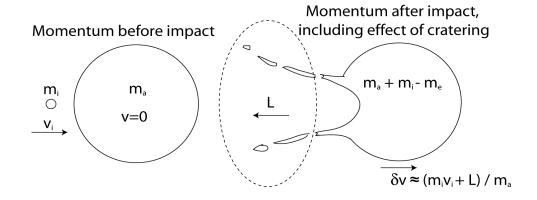


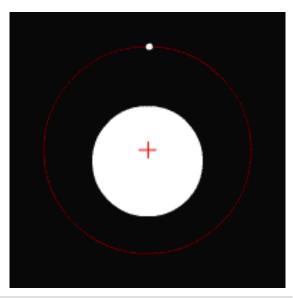
4

Target asteroid

- Assess potential optimal binary asteroids among new discoveries
- Didymos still a good target as of 2Q 2017, later launch opportunities:

Departure date: **2023/10/22** Earth swing-by: 2024/10/26 Arrival date: 2026/09/02 Delta-V: 1.405 km/s

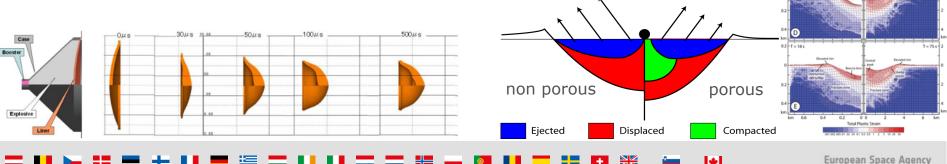

Departure date: **2024/10/14** Earth swing-by: N/A Arrival date: 2026/7/13 Delta-V: 1.514 km/s


· _ II 🕨 == ++ II == 🔚 _ II II == == == 🖬 == 🔯 II == == 🗱 🐜 🛀 🔤

European Space Agency

HERA asteroid deflection objectives

- **1.** Measure the momentum transfer from a kinetic impactor on a binary asteroid
 - Asteroid mass (by wobble or radioscience)
 - Asteroid dynamical properties



HERA asteroid deflection objectives

- 2. Impact models validation and extrapolation to other asteroids
 - Density
 - Crater size/morphology
 - Validate scaling laws by performing second impact at different energy level with JAXA's S.C.I. payload (part of B1 study)
 - outside experimental range of experience
 - "Ground truth" for numerical models & scaling theory
 - Ejecta size distribution, ejection velocities (bonus)
 - Change in the surface material (bonus)

Measuring crater properties

- Asteroid physical properties related to deflection test do not change over few years
- No erosion, no atmosphere (wind), no outside process (impact, dynamical) of magnitude allowing any change over few years
 Tempel 1

Demonstration:

- NASA Deep Impact mission: impact cratering on the 6 km-size comet Tempel 1 on July 4th, 2005 (but no possibility to measure the crater's properties)
- NASA Stardust NEXT: returned to Tempel 1 in 2011 and could measure the crater's properties, although the comet passed its perihelion between the two moments!

Image taken by Deep Impact before its impact on comet Tempel 1 (2005)

Credit: NASA/JPL-Caltech/University of Maryland/Cornell

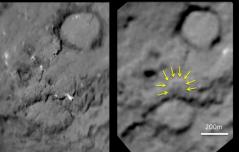
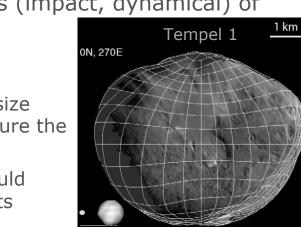
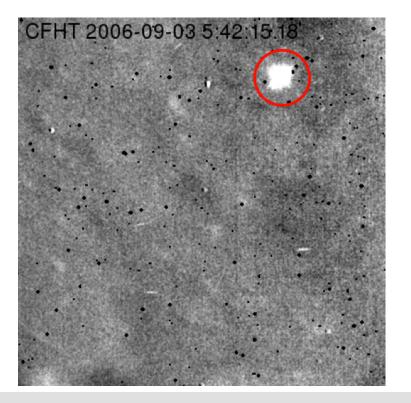
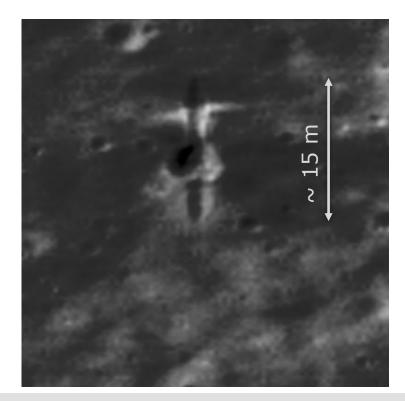



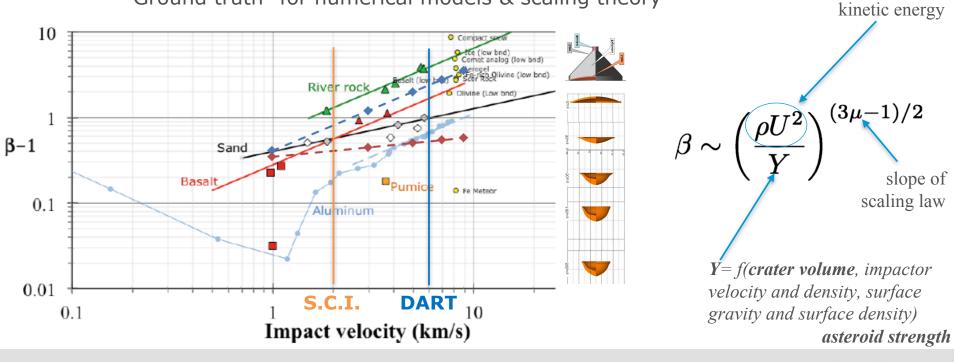
Image taken by Stardust NEXT (crater identification) after Tempel 1 perihelion passage in 2011 (5 years after the impact)


over few years mical) of

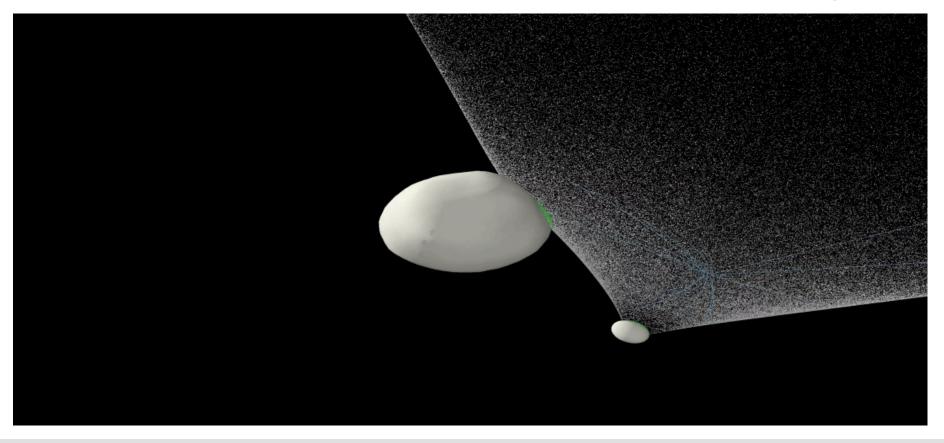

Measuring crater properties: SMART-1 impact

3 September 2006

Press release 22 September 2017

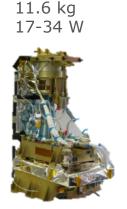

Validation of scaling laws

impactor


Performing second impact at different energy level with JAXA's S.C.I. payload

- outside experimental range of ground laboratories
- "Ground truth" for numerical models & scaling theory

DART impact modelling and observation

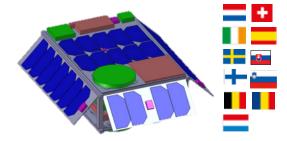


European Space Agency

+

PAYLOAD BASELINE

NAVCAM (In storage)



14.9 kg (6U)

Interested MS

Two payload among:

- Hyperspectral imaging (ongoing)
- Volatiles
- Radioscience
- Seismometry
- Minearology
- Dust environment

Option: study accommodation and release of JAXA's Small Carry-on Impactor

European Space Agency

Mission measurements

(for background info)

Parameter	Required accuracy	Associated payload
Size, mass, shape, density	 Mass: 10% Density: 20% Shape accuracy of 6% or few meters 	Mass from binary orbit, spacecraft tracking (camera, cubesat, radioscience) Shape model (camera), Lidar
Dynamical state (period, orbital pole, spin rate, spin axis)	 Period already known to better than 0.1% Orbital pole: 5° Spin rate: 1% Spin axis: 1° 	camera
Geophysical surface properties, topology, DART crater's properties	 Global surface resolution: 1m Local surface resolution (10% of the surface): 10cm 	Camera (surface features) Cubesat (2 meter resolution)
Chemical and mineral composition of Didymoon and Didymos	Spectral resolution: 45nm or better	Camera, cubesat
Impact ejecta	No accuracy required	Camera, cubesat

The set of th

+

HERA technology experiments

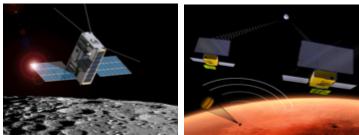
- **1.** demonstrate deep-space (6U) cubesat relayed via an inter-satellite link with ranging capability:
 - Very high-resolution close up asteroid (hyperspectral) imaging
 - Provide complementary measurements to main spacecraft

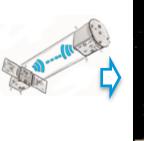
 (e.g. spacecraft-CubeSat radioscience, seismology, end-of-life landing for surface properties characterization...)
 - Close-by imaging of DART impact (if delayed)
- 2. Validate far-range navigation and close-range feature-tracking navigation increasing on-board autonomy
 - Synergies with technologies under development for in-orbit servicing, including novel FDIR based on sensor data fusion.

__ II ▶ == + II **=** ≝ __ II II = = = II ■ II __ II = II ₩ ≤ |

CUBESAT and INTER-SATELLITE LINK

(for background info)


6U CubeSat allows for:


- higher resolution imagining
- Provide additional complementary information (e.g. mineralogy, volatiles, high-res information on porosity...)
- reducing risk to the main mission

Synergies with current CubeSat and microsat miniaturization technologies

Future applications

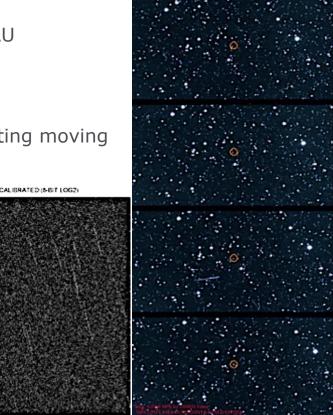
- In-orbit inspection
- Distributed systems for exploration mission (in-situ characterization, remote sensing)
- Swarm architectures for future EOP missions

Far range navigation

(for background info)

Identify faint object and determine relative trajectory

- Background: ROSETTA detection of asteroid Steins from 1AU
- HERA application: arrival to small asteroid


Synergies with in-orbit servicing: same HW and SW (detecting moving

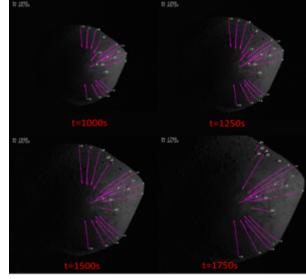
object against star background)

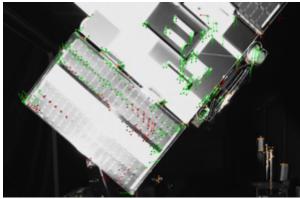
Future applications

- Active Debris Removal (localization of nonresponding satellites/debris
- Mars Sample Return (precursor technology activity for GNC of the Orbiting Sample rendezvous)

Close-range vision-based navigation (for background info)

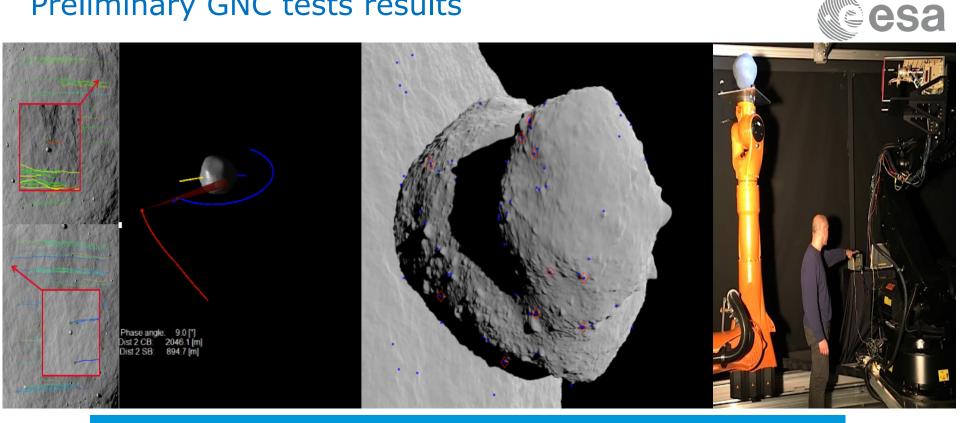
Track unknown features on the surface to estimate relative trajectory


- Background: NASA Mars lander, ESA TRP & CTP activities
- HERA application: proximity operations around asteroid


Synergies with in-orbit servicing: same HW and part of SW

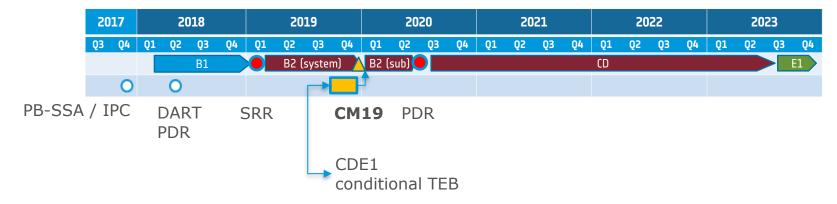
(track features between frames)

Future applications


- ADR, SpaceTug, In-Orbit Servicing, In-Orbit Assembly (pose estimation algorithms before capture)
- Earth Observation or telecomm satellites (autonomous tracking of targets on the surface)

- 💶 💵 🛌 🚛 🕂 0.0 💻 🚝 🚍 0.0 0.0 🚍 🚍 📰 🖬 🖬 0.0 0.0 📰 🖽 💥 📾 🕪 1.0 peak Space Ay

Preliminary GNC tests results



Capable of performing autonomous close asteroid fly-by both with feature tracking and centroid measurements

European Space Agency

HERA schedule

START	END	PHASE	
Mar-18	Dec-18	Phase B1	
Jan-19	Feb-19	SRR	
Feb-19	Dec-19	Phase B2-A	
Dec-19		CM19	*Sep-Nov 19: PhB2CD Conditional TEB
Jan-20	May-20	Phase B2	
May-20	Jul-20	PDR	
Aug-20	Aug-23	Phase CD	
Aug-23	Oct-23	Margin/Launch Campaign	
Oct-23		Launch	

· = ■ ► = = + ■ + ■ = ≔ = 1 ■ ■ = = = = ■ ■ ■ ■ = = = ₩ = |•|

European Space Agency