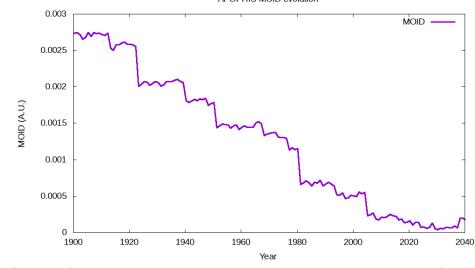
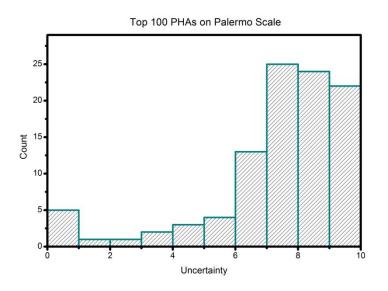
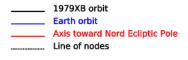
SMPAG – 31/01/2017 (UN-COPUOS)

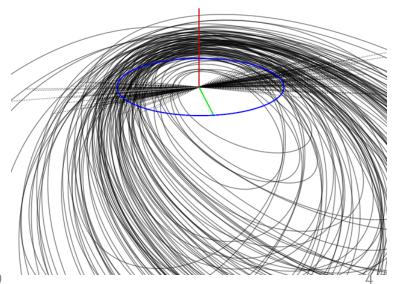

Mirel Birlan, Alin Nedelcu WP 5.9 (Romanian Space Agency)

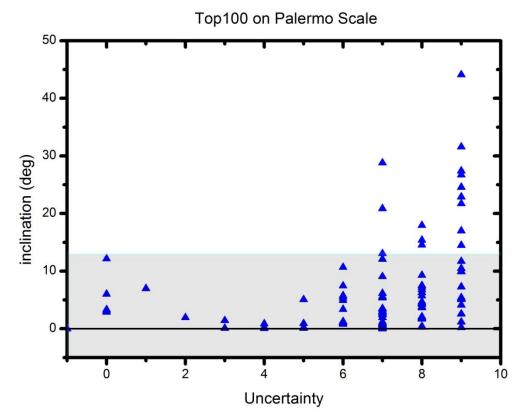
CASE STUDY TOP100 Palermo scale (NEODys Risk)


	Designation		н	PS _{max} •	TS _{max}	Status	Camp. start	Camp. end	Notes
	(29075) 1950DA	IT	17.1	-1.36	n/a	Special			
	(410777) 2009FD	IT	22.1	-1.83	n/a	Special			
	(101955) Bennu	IT	20.6	-2.32	n/a	Special			
	2017RH16	IT	25.6	-2.36	0	Small			
	2010RF12	IT	28.4	-3.26	o	Possible	2047-03-22	2047-03-25	Quite faint
		-				recovery			
	1979XB	Π	18.5	-3.28	0	Lost			
Т	20005G344	IT	24.8	-3.63	o	Possible	2028-04-10	2028-11-14	
						recovery			
	(99942) Apophis	IT	18.9	-3.67	0	Special			
	2009JF1	IT	27.1	-3.75	0	Small			
	2006QV89	IT	25.3	-3.79	0	Small			
	2008UB7	IT	23.9	-3.83	0	Lost			
	2006JY26	IT	28.3	-3.91	0	Small			
	2008JL3	IT	25.3	-3.95	0	Small			
	2012QD8	IT	23.1	-3.95	0	Lost			
	20050//76	T T	05.0	0.07					

MINIMAL ORBITAL INTERSECTION DISTANCE (MOID)


- MOID varies in time- MOID is depending on orbital elements quality (uncertainties)
- MOID depending on dynamical model
- MOID depending on method and algorithm of computation
- MOID varies in time

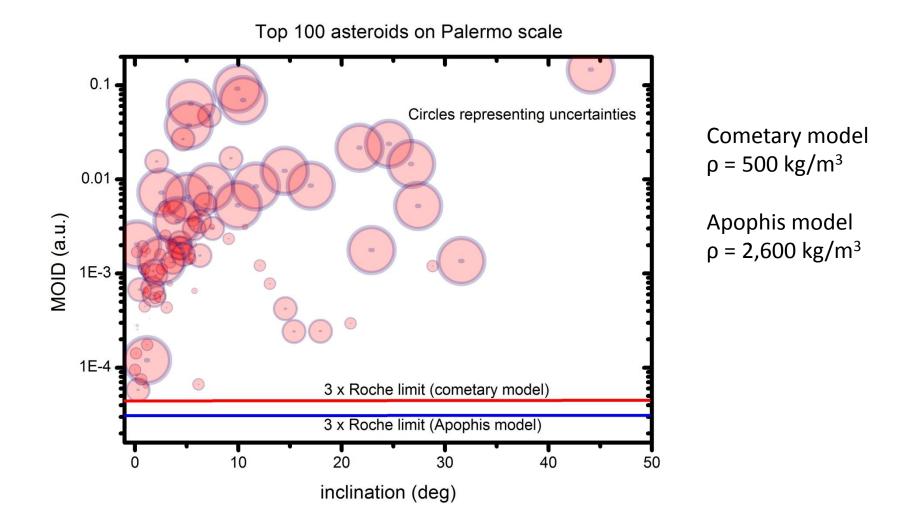

TOP100 Uncertainty


- Major part of the sample exhibits large uncertainty (0 excellent, 9 very bad)
- Uncertainty usually due to small constraints of true anomaly

Investigation of 1997 XB using 100 clones exhibit large excursions in orbital elements.

Inclination vs uncertaintv

Top100 objects with i > 13° have orbits highly uncertain


Roche limit

- Disruption of a body due to the tidal forces of a major planet
- Best example: Shoemaker-Levy 9
- Roche limit is dependent on density and model

SL9 on Jupiter (credit: NASA, ESA)

MOID vs i (and Uncertainties)

Threshold suggestions

- MOID approach Apophis–like MOID could be a basis of establishing a threshold (37,000 km).
- Roche limit A 3xRoche limit (cometary model) could be a basis of threshold (53,000 km).
- Uncertainty of orbits is an important factor which should drive the choice.
- Asteroid with highly inclined orbits are less constrained.