

→ HERA MISSION

ESA UNCLASSIFIED - For Official Use

European Space Agency

÷

HERA/AIM mission scenario

- First ever investigation of deflection test
- Detailed analysis of impact crater (before/after impact or after only depending on DART launch)
- First deep-space CubeSat
- First binary asteroid and smallest ever asteroid visited

Launch dates

- Soyuz launch from Kourou TBC in 2022 timeframe -> international collaboration
- Didymos still a good target as of 2Q 2017, later launch opportunities:

Departure date: **2023/10/22** Earth swing-by: 2024/10/26 Arrival date: 2026/09/02 Delta-V: 1.405 km/s

Departure date: **2024/10/14** Earth swing-by: N/A Arrival date: 2026/7/13 Delta-V: 1.514 km/s

A launch date in 2022 exists with arrival in 2024 but short development time, will be studied

DIDYMOS target

- Didymoon size representative of a potentially hazardous object (generating casualties independently from impact location on Earth)
- Shape and size of primary "well known", not secondary
- Asteroid observed by ground telescopes and radars
- Heliocentric orbit well known

Parameter	Value
Diameter of Primary $D_{\rm P}$	0.780 km +/- 10%
Diameter of Secondary D_{s}	0.163 km +/- 0.018 km
Bulk density of the primary ρ_{P}	2104 kg m ⁻³ +/- 30%
Distance between the centre of primary and secondary a _{orb}	1.18 km +0.04/-0.02 km
Total mass of system	5.278e11 kg +/-0.54e11 kg
Rotation period of the primary	2.2600 h +/-0.0001 h

Minimum Earth-Didymos distances:

Sept 2022 > 0.07 AU (1.04e+7 km) Dec 2024 > 0.56 AU (8.37e+7 km) Jun 2026 > 0.90 AU (1.34e+8 km)

European Space Agency

Spacecraft mass budget

Subsystem	Nominal	Margin	Total
Subsystem	[kg]	[%]	[kg]
EPS	34.9	10%	38.4
OBDH	26.4	10%	29.0
TT&C	22.0	8%	23.8
AOCS/GNC	12.2	5%	12.8
CPS	50.6	6%	53.8
TCS	11.9	16%	13.8
Harness	24.7	30%	32.1
Structure	84.8	20%	101.7
Platform total	267.4	14%	305.5
Payload	19.0	0%	19.0
Payload total	19.0	0%	19.0
Spacecraft dry mass	286.4	13%	324.5
System margin		20%	64.9
Spacecraft dry mass + Margin			389.4
Propellant mass			249.0
Pressurant			1.0
Spacecraft launch mass			639.4
Launcher performance (w.o. adapter)			
Launcher Margin			130.6

Dry mass growth potential of **40kg** for additional payload -> **potential for international collaboration**

= ■ ► = + ■ + ■ = ≝ = ■ ■ = = = ■ ■ ■ ■ ■ = = ■ ₩ =

POTENTIAL PAYLOAD CONTRIBUTIONS

Option: study accommodation and release of JAXA's Small Carry-on Impactor **Opportunities for additional international collaborations**

Additional Europeans interests expressed to ESA (to be discussed with MS in frame of B1):

HERA phase B1 (SSA + GSTP)

Procurement proposals approved in IPC and Feb PB-SSA enabling CM19 preparation:

HERA system Phase B1 study	(co-funding GSTP 6 + SSA-NEO)	4.000 K€
-----------------------------------	-------------------------------	----------

Technology developments and support activities:

ISL breadboard (GSTP, G61M-005ET, PT)	250 K€
Engineering Model of a laser altimeter (GSTP, G61M-002EC, PT+PL+IE)	400 K€
HERA deep-space cubesat phase-A (GSTP)	400 K€
Asteroid environment analyses, simulations and science support (GSP)	500 K€

= 11 🖕 :: = + 11 = 🔚 = 11 11 = = :: 🖬 🛶 🚺 11 = :: 12 🕮 🗯 🖕

•

HERA schedule

START	END	PHASE	
Mar-18	Dec-18	Phase B1	ITT to be released latest in January 2018
Jan-19	Feb-19	SRR	
Feb-19	Dec-19	Phase B2-sys	stem
Dec-19		CM19	*Sep-Nov 19: PhB2CD Conditional TEB
Jan-20	May-20	Phase B2	
May-20	Jul-20	PDR	
Aug-20	Aug-23	Phase CD	
Aug-23	Oct-23	Margin/Laun	ch Campaign
Oct-23		Launch	

Image: Image

HERA Implementation

- (Optional) programmatic frame to be agreed with MS before CM19: Space Safety
- Participating States contribute to common costs pro-rata of their contribution.
- In-kind contributions possible: e.g. technology, payload, facilities...
- Participation to the phase B1 important to consolidate system requirements for selected technologies through analyses and preliminary validation of algorithms
- Preliminary CubeSat operations interfaces to be analysed and OIRD defined during phase B1
- Phase B2 proposal (FFP) at the end of B1 and committed ceiling price financial proposal for C/D/E1 to be converted in FFP after CM19.

Conclusions

- HERA provides a robust and cost effective means to perform a planetary defense validation test with a solid balance between risk and innovation.
- HERA brings European industry one step forward in CubeSat relayed operations for future missions architectures (swarms in LEO, deep-space exploration).
- Asteroid close-proximity operations provide optimal environement to test GNC solutions applicable to active debris removal and in-orbit servicing.
- HERA provides unique visibility and public engagement in space activities
- HERA maintains strong international collaboration with a robust schedule and clear interfaces.
- Support from SMPAG is important to explain necessity for planeteray defense precursor mission

INSPIRATION AND OUTREACH

SCIENCE

sand art performance

Asteroid Day press conf

Astrofest (London, June 2016) Science&Vie Magazine

CNN TV news

European Space Agency

Stephen Howking, Theoretical Physic

Asteroid Day 201

→ HERA MISSION

Ian Carnelli (Ian.Carnelli @ esa.int) Advanced Concepts and Studies office (TEC-SF)