

Mission analysis for potential threat scenarios: kinetic impactor

Camilla Colombo, Pierluigi Di Lizia, Lorenzo Bolsi, Mathieu Petit, Giovanni Purpura, Marta Albano, Marco Castronuovo, Roberto Bertacin, Alessandro Gabrielli, Ettore Perozzi, Giovanni Valsecchi, Elena Vellutini, Simone Pizzurro *SMPAG Meeting 18 Oct 2018*

The team

Italian Space Agency

Marco M. Castronuovo, Marta Albano, Roberto Bertacin, Alessandro Gabrielli, Ettore Perozzi, Simone Pizzurro, Elena Vellutini.

Politecnico di Milano

Camilla Colombo, Pierluigi Di Lizia, Lorenzo Bolsi, Mathieu Petit, Giovanni Purpura

IAPS/INAF, IFAC/CNR

Giovanni Valsecchi

INTRODUCTION

18/10/2018

SMPAG meeting Knoxville

3 POLITECNICO MILANO 1863

Introduction

Space Mission Planning Advisory Group (SMPAG)

Prepare a coordinated response protocol to an impact threat scenario

- Criteria and thresholds for impact response actions
- Mitigation mission types/technologies to be considered
- Mapping of threat scenarios to mission types
- Reference missions for different NEO threat scenarios
- A plan for action in case of a credible threat
- Communication guidelines in case of a credible threat
- Roadmap for future work on planetary defence
- Criteria for deflection targeting
- Toolbox for a characterisation payload

Reference missions for different threat scenarios

- Define a number of typical Near Earth Objects (NEOs) threat cases (based on time to closest approach, material characteristics, dynamical properties)
- Set of reference mission identified (e.g. mass; orbit; time-to-closest-approach) and evaluated in accordance with criteria defined (e.g. time between the impact alert and the launch window opening, etc).
- Sensitivity analysis on accuracy of orbit determination
- Robust control on the magnitude and direction of the imparted delta-velocity, centre of impact point
- For each reference mission investigate political and financial implications and constraints in the risk mitigation analysis
- Considering several deflection strategies

Summary till January 2018

- Target asteroid selection
- Definition of threat scenarios: direct hit and resonant scenario
- Mission design for kinetic impactor direct hit
 - Mission analysis
 - System design
 - Additional payload to be agreed with Payload Toolbox task
- Gravity tug system design

Insight into kinetic impactor design

Goals

- Improve trajectory design of the direct impact to improve deflection efficiency
 - Consider fly-bys during trajectory
- Guidance navigation and control of the approach phase
 - Navigation based on visual camera
 - Feedback on-board control algorithm
- Study resonant encounter hit
 - Design of deflection manoeuvre robust to multiple encounters
 - Avoiding deflecting into a resonant return

IMPROVING DIRECT HIT SCENARIOS WITH MULTIPLE FLY-BYS

SMPAG meeting Knoxville

8 POLITECNICO MILANO 1863

Introduction

Aims

- Introduce gravity assist of Earth, Mars and Venus in the design of a deflection mission:
 - Kinetic impactor
 - Maximise achievable deflection
- Apply the method to a single real NEO and to a population of NEOs spread through all the spectrum of orbital parameters and analyse the global qualitative results

Selection of the test case and definition of parameters

2010RF12 NEO-like selected for with probability of an impact in the end of 2095

Semi-major axis	Eccentricity	Inclination	Right ascension of ascending node	Argument of the periapsis
$1.58 \cdot 10^8 km$	0.187	0.911 <i>deg</i>	162 deg	267 deg

Launcher and NEO properties

18/10/2018	SMPAG meeting Knoxville				
β		1			
$ ho_{NEO}$		2600 kg/m ³			
D _{NEO}		100 m			
I _{sp}		300 <i>s</i>			
Δv_{launch}		1 km/s			
warningTime	?	10 years			

Direct hit test case

Black Direct hit Gravity assists trajectories Earth gravity assist Blue Venus gravity assist Green Mars gravity assist Red 8000 7000 6000 5000 [by] 0 3000 E 2000 3000 2000 1000 0 -7000 -5000 -3000 -6000 -4000 -2000 -1000 0 -(r_p - r_{p 0}) [km]

11 POLITECNICO MILANO 1863

Deflection efficiency

Model – Population generation

- Perform analysis on NEAs population (NEOPOP software) from ESA [6] to generate a realistic set of orbital parameters defining every possible NEO
- Filter $40 m < d < 200 m \rightarrow$ severe event
- Assumptions:
 - Earth and asteroid are **both at MOID** at a fixed time *t_{MOID}*
 - Earth orbit is **circular** $\rightarrow \Omega_{impact}$ and ω_{impact} are easily computed

M. Granvik, J. Vaubaillon and R. Jedicke, "The population of natural Earth satellites," *Icarus*, vol. 218, no. 1, 2012.

Results

Conclusions

- Best solution in most of the case analysed is Earth's gravity assist:
 - Larger achievable deflections with the same initial mass of the spacecraft
 - Smaller initial mass required to have the same deflection (meaning a lower cost)
- Venus and Mars gravity assist do not seem to improve performances. Changing the time of close approach can boost their performances, due to phasing effect

Aim: characterise for any NEO orbit the best gravity assist sequence. **Conclusions**: Results to be included in final report

OPTICAL AUTONOMOUS GNC

18/10/2018

SMPAG meeting Knoxville

15 POLITECNICO MILANO 1863

Optical autonomous GNC

Simulation overview

- Test case for the simulations: impact mission with asteroid 2010RF12
- Considered 3σ uncertainty: 10 km in position and 1 m/s in velocity
- Simulations begin 2000 second before impact
- GNC strategy and simulation parameters:
 - On-board autonomous GNC
 - Only optical sensor
 - State reconstruction with Extended Kalman Filter
 - Asteroid shape: 101955 Bennu (the shape of 2010RF12 is unknown)
 - Asteroid diameter: 500 m
- Simulation output: impact position w.r.t. center of mass

Image analysis algorithm

Circular fitting

- After the image is acquired, threshold filtering is performed.
- Image of the asteroid bounded with a rectangular box, then:
 - If box size < 10 px \rightarrow Brightness centroiding
 - Else → Circular fitting (least squares)
- Fitting is performed using the points where brightness suddenly drops.
- In order to detect the fitting points, the pixels in the image are analyzed over parallel lines.
- The orientation of the lines is computed using orbital and attitude data, which are known/estimated on board.

Demonstration of the image analysis algorithm

Control: Zero Effort Miss

- To correct the trajectory and secure the impact, a control algorithm based on the Zero Effort Miss parameter has been implemented.
- ZEM = difference in position between the asteroid and the spacecraft, computed integrating the motion with no control force, up to the instant at which the spacecraft misses (goes beyond) the asteroid.
- The optimal solution of the control, in terms of fuel consumption, requires a variable gain that is a function of the time remaining to the impact
- Then the thrusters are activated accordingly, taking into account the spacecraft mass.

Considered cameras

Five different optics-sensor combinations have been simulated:

- MCSS ECAM-C50: camera considered in the paper;
- A proposed device, not available off-the-shelf, having:
 - high resolution (as the ECAM-C50)
 - medium focal length (as the Rosetta NavCam).
- Three navigation cameras taken from actual space missions.
- These cameras have very different focal length, from the 12.6 mm of ECAM-C50 to the 2000 mm of Deep Impact's camera.

Monte Carlo simulations results

Results of the Monte Carlo simulations starting 2000 seconds before impact.

		Deep Impact	Rosetta	New Horizons	ECAM-C50	Proposed			
Focal Length	[mm]	2000	152.5	263	12.6	150			
FOV	[deg]	0.6	5	0.29	19	5			
Resolution	[px]	1024	1024	1024	1944	1944			
Sensor size	[mm]	20.9	13.3	1.3	4.2	13.1			
Pixel size	[µm]	20.5	13.0	1.3	2.2	6.7			
Simulation results									
Mean error	[m]	30.5	39.9	42.8	76.0	25.2			
Required ∆V	[m/s]	8.5	11.1	8.1	14.1	9.8			
Images ≥ 1px	[-]	138	143	125	92	143			
Images ≥ 10px	[-]	138	56	125	27	108			

- Deep Impact and New Horizons are able to use the circle fitting algorithm over all the acquired images.
- In terms of mean error, best results are achieved by the proposed camera (which has medium focal length and high resolution) and by Deep Impact (which has a lower resolution yet an extremely long focal).

SMPAG meeting Knoxville

Monte Carlo simulations results

Impact positions

- Monte Carlo simulations show that all the cameras allow to impact the asteroid, but the lowest error is achievable only with medium/long focal lengths.
- The proposed camera, with medium focal length and high resolution, gives the lowest average error.

Resulting impact points and error ellipsis (center of image axes = center of mass)

RESONANT HIT SCENARIOS

SMPAG meeting Knoxville

22 POLITECNICO MILANO 1863

B-plane

Resonances

- Circle on the b-plane $\xi^2 + \zeta^2 2D\zeta + D^2 = R^2$
- Requirement: Tisserand criterion < 3
- Hypotheses: 2-Body Problem, Circular Earth orbit
- For a given close encounter, the **post-encounter semi-major axis** is computed. The resulting period is compared to the ones of **possible** resonances. $kT_P = hT' \rightarrow a'$
- A circle can be drawn on the b-plane for each couple of integers (h, k)

Resonance plotted according to their k value: dark low k, light low k

Valsecchi G. B., Milani A., Gronchi G. F. and Chesley S. R., "Resonant returns to close approaches: Analytical theory", 2003

18/10/2018

Deflection manoeuvre

Optimal deflection strategy to avoid keyholes

- A deviation along ζ is considered (early deflections)
- Target ζ value
 - Nominal encounter within a keyhole
 - The middle point between the keyhole and the closest one
 - Nominal encounter between keyholes
 - The middle point between the considered keyholes
- δv vector direction through eigenvector problem
- Not a pure maximisation when trying to avoid a keyhole

Results

Preliminary Deflection Mission Design

- 2095 encounter of 2010 RF₁₂-like with the Earth (6,5) keyhole
- Target ζ value between keyholes
 (6,5) and (7,6)

- Escape, DSM, impact
- Max distance from the closest keyholes
- Min initial s/c mass

A part of this study has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 – COMPASS)

Mission analysis for potential threat scenarios: kinetic impactor

Marco M. Castronuovo Camilla Colombo Pierluigi Di Lizia

marco.castronuovo@asi.it camilla.colombo@polimi.it pierluigi.dilizia@polimi.it