Update on Japanese mission

Space Mission Planning Advisory Group (SMPAG), 22nd Meeting 31 January 2024@Online

Makoto Yoshikawa

Japan Aerospace Exploration Agency

Japanese missions related to the planetary defense Current status: summary

- Hayabusa2 extended mission (Hayabusa2#)
 - The spacecraft is operating on schedule without any major problems.
- DESTINY⁺
 - The launch date has been changed to FY2025 because of two rocket-related accidents. (rocket = Epsilon Launch Vehicle)
 - Due to the above, there is a possibility that the Phaeton flyby timing will be changed from the nominal 2028 to 2030, and we are currently considering the impact of this on the system design.
 - Regarding the development of science equipment, there are no changes other than the schedule.
- Collaboration for Hera
 - JAXA has provided a thermal infrared imager (TIRI).
- Collaboration for RAMSES
 - under discussion

Activities related to the planetary defense in Japan

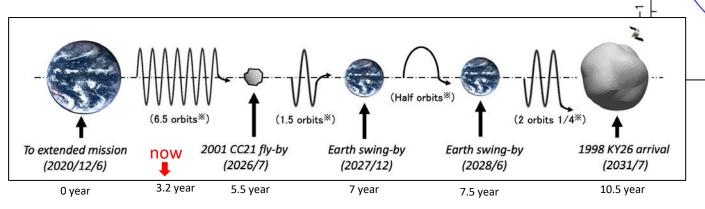
- Planetary defense session in JpGU 2024 (international session)
- Japan Geoscience Union Meeting, May 26-31, 2024 @ Makuhari Messe, Chiba, Japan
- Session: International initiatives and cooperation in planetary defense

https://www.jpgu.org/meeting_e2024/sessionlist_en/detail/M-ZZ40.html

- ➤ Oral Session : Wed, 29 May, 2024 (9:00 ~ 12:15 JST)
- ➤ On-site Poster Core time: Wed, 29 May, 2024 (17:15~18:45 JST)
- in English, hybrid (in-person and online)
- ➤ Call for abstract : Final Deadline: 17:00 Thu, 15 Feb [JST]

■ Planetary defense symposium in ISAS/JAXA (domestic symposium in Japan)

https://www.isas.jaxa.jp/researchers/symposium/planetary_defense/fy_2023.html in Japanese


- > Oral Session : Feb 19-20, 2024 at ISAS/JAXA, hybrid (in-person and online)
- ➤ This is a symposium for Japanese people, but it is welcomed to talk in English.

References

Hayabusa2 Extended mission: Hayabusa2#

(SHARP): Small Hazardous Asteroid Reconnaissance Probe

- After returning to the Earth in December 2020, we continue to operate Hayabusa2.
- The next target is the fly-by of 2001 CC21 in July 2026.
- The final target is the rendezvous of 1998 KY26 in July 2031.

(Image credit: JAXA)

Object positions on 8 Feb. 2023 2

X (au)

* indicates the number of orbits around the Sun.

2020 /12/6

1998 KY26

2001 CC21

Hayabusa2# Mission Sequence

Timing	Event	Engineering Achievement	Science Achievement
2021/1 ~ 2026/7	Long-term deep space cruise	 Acquisition of long-term operation technique of spacecraft under the resource-saving scheme in deep space 	Zodiacal light observationExoplanet observation
2026/7	Flyby of 2001 CC21	 Super proximity flyby to asteroid Precise targeting technique for the asteroid flyby contributes to Planetary Defense study 	• Flyby observation of the asteroid
2027/12	Earth swing-by1	 Completion of 1st leg of long-term deep space operation 3rd Earth swing-by 	 Calibration of on-board science equipment by Moon observation
2028/6	Earth swing-by2	 Completion of 2nd leg of long-term deep space operation 4th Earth swing-by 	 Calibration of on-board science equipment by Moon observation
2031/7	Rendezvous to 1998 KY26	 Completion of 3rd leg of long-term deep space operation Multi-rendezvous to asteroid Acquisition of exploration technique to the fast rotator, which also contributes to Planetary Defense study 	 Clarification of formation and evolution of Fast Rotator Acquisition of the scientific knowledge which contributes to Planetary Defense study

Hayabusa2# Operations in 2023 -2024

· 2023

– Jan. - Nov.: ONC observation x 26 (Milky Way, zodiacal light, exoplanet, star)

- Feb. 14: LIDAR health check

April - August: TIR dark observation x 2

- May 30: NIRS3 Jupiter observation

- Sep. 12 - 25: 4th Term IES operation (2 weeks)

- Nov. 14 – Dec.18: Solar conjunction operation

· 2024

- Feb.: Rewriting on-board GNC software for new function

- June: Solar conjunction operation (2 months)

- Oct.: 5th Term IES operation (3 weeks)

The target asteroids of Hayabusa2#

2001 CC21

Shape	elongated?
diameter	700 m (albedo 0.15 assumed)
Spin period	5.017 hours
Spectral type	L type \rightarrow S type
Semimajor axis	1.03 au
Orbital period	1.05yr(383 day)

1998 KY26

Shape	Spherical (from radar observation)
Av. diameter	About 30 m
Spin period	10.7 min (0.178 hr)
Tumbling motion	No short-term variability detected
Spectral type	Possible carbonaceous asteroid
Semimajor axis	1.23 au
Orbital period	1.37yr(500 day)

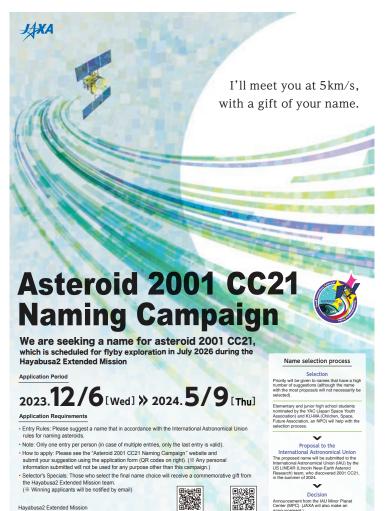
Properties of 2001 CC21 (recent data)

• Spin state

- Spin axis ~ 90 deg according to lightcurve data
- Spin period = 5.02 h according to lightcurve data

Taxonomy

- L-type according to earlier observations (though there were concerns about data quality and outcomes).
- S- or Sq-type according to latest spectroscopic and photometric observations (This is the current agreement).


Shape

• $b/a \sim 0.5$ according to lightcurve data – photometric shape available

• Size

- D \sim 500 700 m according to lightcurve data
- $D = 449\pm12$ m according to occultation, though the lightcurve behavior suggesting it may be a bit larger along the long axis (if elongated).
- D = 440 530 m from ALFOSC
- D = 440 520 m from MuSCAT

These data were compiled by Masatoshi Hirabayashi.

Campaign site

Application form

https://www.hayabusa2.jaxa.jp/en/

DESTINY⁺

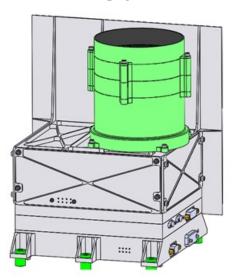
(by Takeshi Takashima)

- ➤ DESTINY⁺ is a science and technology demonstration mission to asteroid (3200) Phaethon, the parent body of the Geminids meteor shower.
- ➤ It will explore the asteroid during a flyby (>33km/s), and conduct scientific observations of cosmic dust, which is considered to be a source of the organic matter on Earth.
- > This mission will demonstrate technologies that will enable future low-cost and high-frequency deep space exploration.
- \gt Launch: FY2025, Phaethon fly-by: 2028 \rightarrow 2030?

(Image credit: JAXA)

artist's illustration of Phaethon (©JAXA)

International collaboration


- •DLR : Development of Dust Analyzer
- •US (Sean Marshall [Arecibo observatory/Univ. of Central Florida) : Shape model of Phaethon
- •US (IOTA(International Occultation Timing Association), JPL, Minor Planet Center): Orbit determination of Phaethon

Collaboration with Hera

(by Tatsuaki Okada)

JAXA has provided a thermal infrared imager (TIRI) to Hera. TIRI is developed based on TIR of Hayabusa2.

Hera TIRI

Detector	Lynred PICO1024
Wavelength	7-14 [µm], with 6 narrow bands
Pixels	1024 x 768
FOV	13.3 x 10.0 [deg]
IFOV	0.013 [deg]
Temperature	150-400 [K]
NETD(@300K)	< 0.1 K
Mass	4.0 +/- 0.4 kg
Power	17 +/- 3 W

(Image credit: JAXA)