SMPAG – 24/03/2021 (UN-COPUOS)

Mirel Birlan, Alin Nedelcu WP 5.9 (Romanian Space Agency)

NEO/PHA density

- Density of objects
 - Function of internal structure (monolithic or rubble pile)
 - Function of mineralogy (ices/volatiles rich, silicate rich, metal rich)
 - Function of thermal properties (low albedo NEOs imply large diameters at the same magnitude)

NEO/PHA dominated by silicates

NEO/PHA dominated by silicates

- Constant distribution over two orders of magnitude in diameter
- Constant distribution over eight orders of magnitude in volume
- C-type dropping < 10% for D<1.5km could be an observational bias

Density

	Meteorite		ρ	N_s	\mathcal{N}_m	Refs.
	Ord. chondrites	Н	3.42 ± 0.18	265	157	2,3
	Ord. chondrites	L	3.36 ± 0.16	277	160	2,3
Silicates	Ord. chondrites	11	3.22 ± 0.22	149	39	2,3
Sincates	Carb. Chondrites	CI	1.60 ± 0.03	14	4	2,3
(S-taxon)	Carb. Chondrites	CM	2.25 ± 0.08	33	18	2,3
, , , , , , , , , , , , , , , , , , ,	Carb. Chondrites	CR	3.10	7	3	2
Carbonaceus	Carb. Chondrites	CO	3.03 ± 0.19	22	8	2,3
	Carb. Chondrites	CV	2.79 ± 0.06	51	10	2,3
(C-taxon)	Carb. Chondrites	CK	2.85 ± 0.08	3	3	3
	Enstattles	EH	3.47 ± 0.21	16	9	4
_	Enstatites	EL	3.46 ± 0.32	25	14	4
E-taxon	Achondrites	HED	3.25 ± 0.26	96	56	5
	Stony-Iron	Pal	4.76 ± 0.10	10	5	2
	Stony-Iron	Mes	4.35 ± 0.02	8	3	2
	Stony-Iron	Ste	4.18 ± 0.10	2	1	2
X-tayon	Iron	Ata	4.01 ± 0.04	1	1	1
	Iron	Hex	1.37 ± 0.14	2	2	1
	Iron	Oct	1.14 ± 0.13	5	5	1

Carry, B. PSS 2012₆

Rubble pile asteroids and the equatorial ridge

Monolithic versus rubble-pile

- Rubble pile asteroids seem to represent better NEA population (Pysn > spin barrier)
- Reconsideration of asteroid densities toward lower values

Correlation between graze and energy

- Compute the Minimal Orbital Intersection
 Distance for all NEAs 2021 2031
- Estimate the energy interval using a density interval
- Consider the energy of 10 MT (Tunguska like or Meteor Crater like events) as threshold

Evergy vs MOID

H>25 (2020-2030)

Top 50 MOIDs 2021-2031

 Osculating elements (epoch March 2021)

 Large Part objects discovered in 2021

 Proficiency of NEA surveys

Summary

- 3xRoche limit in hydrodynamic model, as threshold
- 60,000 km of altitude (4x10⁻⁴ a.u.) as closest approach to be included into the list of threats
- Objects releasing energy greater than Tunguska event to be included on the list of threats
- Timeframe threshold for intervention work in progress