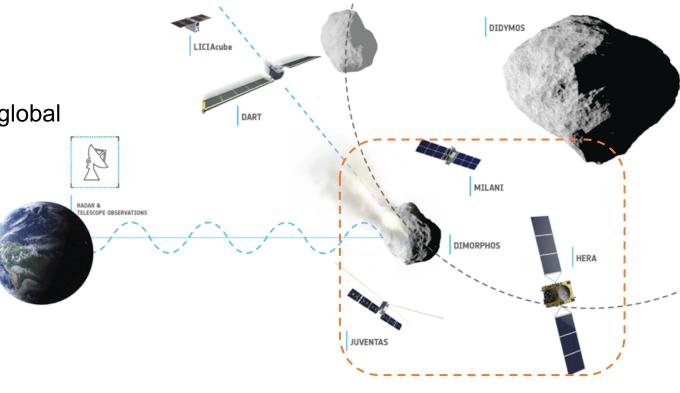


Mission objectives



Core asteroid investigation requirements:

- i. Determine mass of Dimorphos
- ii. Determine global properties of Dimorphos: size, global shape, volume, density, porosity
- iii. Size distribution of surface material
- iv. Dynamical properties of the Didymos system
- v. Shape of DART's impact crater
- vi. Size distribution of excavated material

Opportunity asteroid investigation requirements:

- vii. Surface strength (through CubeSats landings)
- viii. Interior structure of Dimorphos
- ix. Composition
- x. Transport of impact ejecta from Dimorphos to Didymos

Hera Planning Overview

Launch: October 2024

Start rendezvous phase: December 2026

Start proximity operations: February 2027

End of nominal operations: September 2027

Phase	Duration	Approximate distance range	Objectives & Constraints	GNC aspects
ЕСР	6 weeks	20 - 30 km	Initial physical and dynamical characterization. Didymos and Dimorphos in FOV of camera.	Commissioning.
PDP	4 weeks	As ECP	CubeSats released and commissioned.	As ECP (no science requirements).
DCP	4 weeks	8 - 20 km	Accurate characterisation of Dimorphos mass and density, and medium-resolution imaging. Different latitudes and longitudes at different local times and different viewing angles. Didymos fits in FOV of camera.	Didymos LOS navigation. Semi-autonomous or autonomous attitude guidance.
СОР	6 weeks	4 - 22 km	Dimorphos high-resolution imaging and full characterization of DART's impact crater. Different latitudes and longitudes at different local times and different viewing angles.	Didymos and/or Dimorphos LOS navigation. PALT operational. Didymos feature tracking (TBC). Autonomous attitude guidance.
EXP	6 weeks	1 - TBD km	Very high-resolution images of DART impact crater. Different local times and viewing angles.	Didymos and/or Dimorphos LOS navigation. PALT + feature tracking. Autonomous attitude guidance. Trajectory guidance.
Total	26 weeks			

Hera spacecraft configuration

HERA - Total Launch Wet Mass	launch 2026 1257 (-42)	launch 2024 1240 (-41)	
Propellant	559 (-5)	542 (-4)	
→ tank filling ratio	97,3%	94,3%	
HERA - Total Dry Mass at Launch	697.6 (-37,5)	
Pressurant	2.	0	
System margin on nominal dry mass	10%	63,2 (-32,4)	
UEDA C. C. N ID. M.	w/o unit MM	/w unit MM	
HERA Spacecraft - Nominal Dry Mass	570,8 (+2,5)	632.4 (-5,1)	
Platform	516.2 (+1,7)	573.2 (-4,1)	
Electrical Power Subsystem	117.9	131.0	
Data Handling Subsystem	24.8	26.6	
Communication Subsystem	27.1	29.3	
AOCS (with Guidance. Navigation & Control)	24.8	26.5	
Propulsion Subsystem	80.5	85.9	
Thermal Control Subsystem	16.8	20.1	
Structure Subsystem	150.1	164,6	
Harness	69.4	83,	,6
Inter-Satellite Link Subsystem	4.8	5.	7
Payload	54.6 (+0.1)	59.2 (-1)	

Payload configuration

SMC: Small Monitoring Camera

Opportunity payload, mounted canted on payload deck to

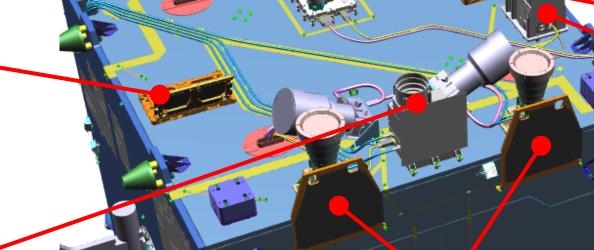
monitor CubeSat deployment,

FOV: ±48.3°

Milani CubeSat

- Multispectral imager
- Retroreflectors
- Dust analyzer
- Radioscience

Ranging lidar to determine distance to asteroid



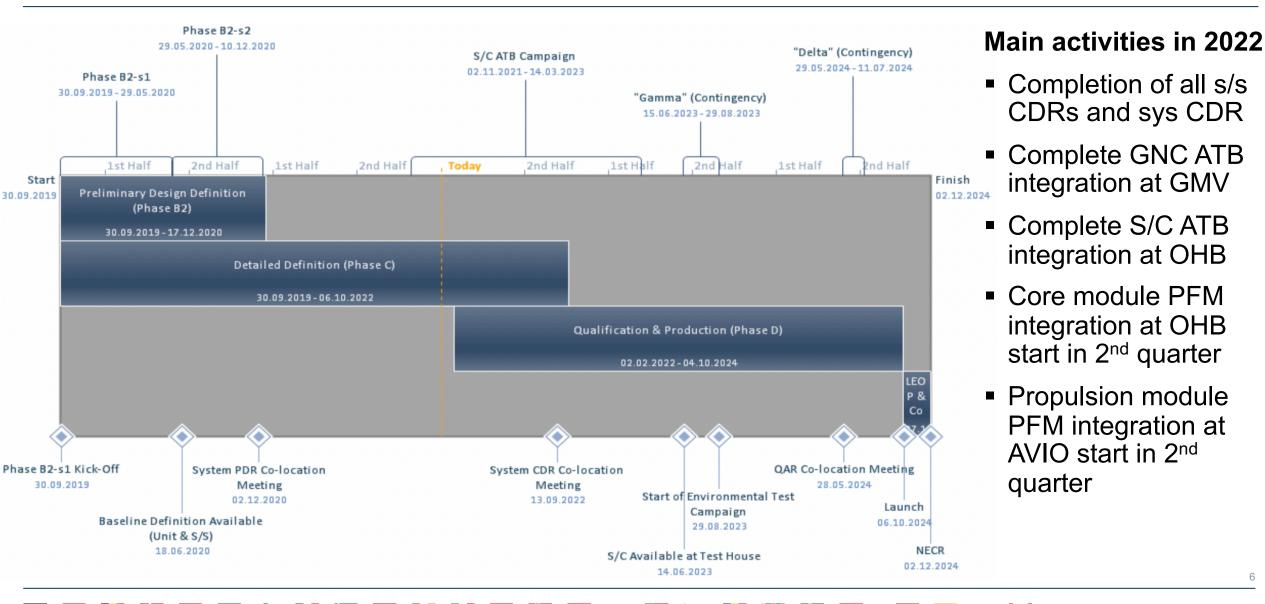
Juventas CubeSat

- Low-frequency radar
- Gravimeter
- Radioscience

Hyperscout

Multispectral snapshot imager (VNIR), FOV: 15.5°x8.3°

TIRI: Thermal InfraRed Imager


Thermal imager (8-14 µm), with filter wheel, FOV: 13.3°x10.0°

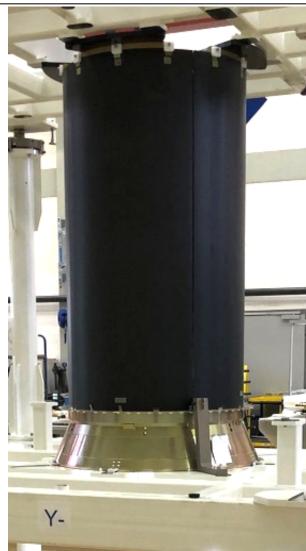
AFC: Asteroid Framing Camera(s)

Redundant visible cameras used for both GNC and science purposes, FOV: 5.5°x5.5°

Hera project schedule

Hera spacecraft integration in 2022



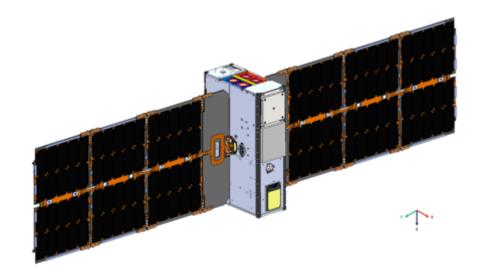

HGA SM

PCDU

Pressurant tank

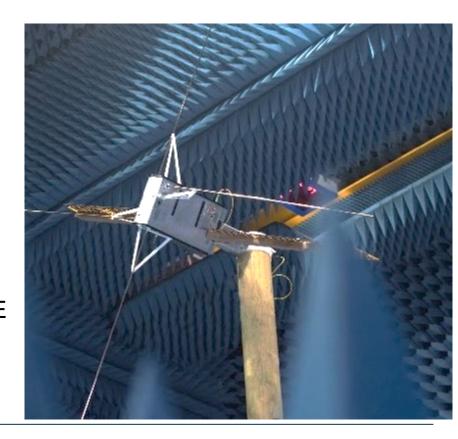
Central tube PFM

7


HERA CubeSats - MILANI

Mission Status:

- Successful System, Mission analysis and GNC PDR (July 2021)
- System CDR analysis (Mechanical and Thermal) started
- Spacecraft EM Test Bed (Flatsat) assembly on-going (all units in house).
- Structural Thermal Interface Model (STIM) specification and design on-going
- Chemical Propulsion development on-going (successful design Review in January 2022). Prototype of evaporators and fluidic on-going.

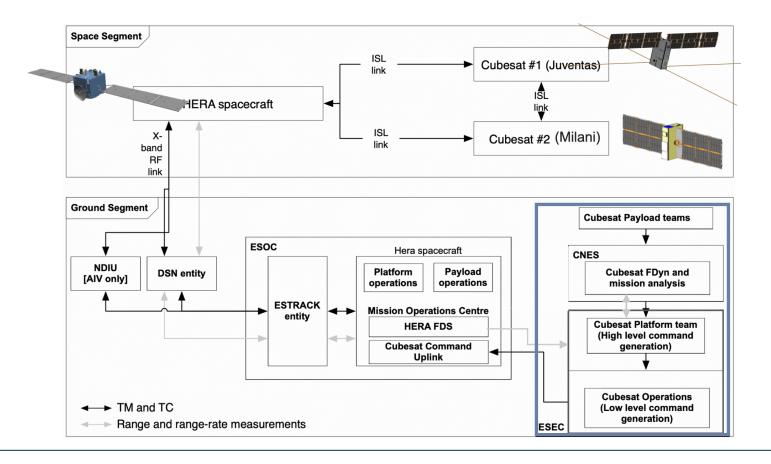

HERA CubeSats - JUVENTAS

CDR CDR 2023 2023 2024 CO PM1 PRR PM3 CODR Part 1 Part 2 TRR QAR LRR Launch December NOV/DEC March 2020 2021 2022 2024

On-going

Mission Status:

- System CDR Part 1 completed
- System CDR Part 2 (Q1 2021) Review focus on mission operations, software, test procedures, subsystems qualification
- Successful GNC CDR November 2021
- Successful GRASS (Gravimeter) CDR November 2021
- JURA (Low Frequency Radar Instrument) CDR ongoing.
- LFR Testing at ESTEC Hertz facility completed
- On-going qualification of the LFR antennas deployment mechanism.
 Vibration test passed including shock
- On-going Heavy Ion Testing for PCDU / OBDH and Battery selected EEE parts



Ground Segment development

- H-MOC development: PDR ongoing, spacecraft simulator under procurement. OPS team ramping up in 2022.
- C-MOC: RFQ sent to industry, industrial proposal due in Feb 2022

